CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends

Andrew J. Medford1, Chuan Shi1, Max J. Hoffmann1, Adam C. Lausche1, Sean Fitzgibbon1, Thomas Bligaard2, Jens K. Nørskov2
1Department of Chemical Engineering, Stanford University, Stanford, USA
2SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, Menlo Park, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dumesic JA, Rudd DF, Aparicio LM et al (1994) The microkinetics of heterogeneous catalysis. AIChE J 40:1085–1087

Davis ME, Davis RJ (2003) Fundamentals of chemical reaction engineering. Chapter 7. McGraw-Hill, New York

Deutschmann O (2011) Modeling and simulation of heterogeneous catalytic reactions: from the molecular process to the technical system. Wiley, Weinheim

Stoltze P (2000) Microkinetic simulation of catalytic reactions. Prog Surf Sci 65:65–150. doi: 10.1016/S0079-6816(00)00019-8

Reuter K, Scheffler M (2006) First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys Rev B 73:045433. doi: 10.1103/PhysRevB.73.045433

Hoffmann MJ, Matera S, Reuter K (2014) kmos: a lattice kinetic Monte Carlo framework. Comput Phys Commun 185:2138–2150. doi: 10.1016/j.cpc.2014.04.003

Honkala K, Hellman A, Remediakis IN et al (2005) Ammonia synthesis from first-principles calculations. Science 307:555–558

Andersson MP, Bligaard T, Kustov A et al (2006) Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J Catal 239:501–506. doi: 10.1016/j.jcat.2006.02.016

Cheng J, Hu P (2008) Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. J Am Chem Soc 130:10868–10869. doi: 10.1021/ja803555g

Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46. doi: 10.1038/nchem.121

Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci USA 108:937–943. doi: 10.1073/pnas.1006652108

Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1:365–384. doi: 10.1021/cs200055d

Rankin RB, Greeley J (2012) Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal 2:2664–2672. doi: 10.1021/cs3003337

Wang H, Schneider WF (2012) Comparative chemistries of CO and NO oxidation over RuO2 (110): insights from first-principles thermodynamics and kinetics. Mol Simul 38:615–630. doi: 10.1080/08927022.2012.671521

Vendelbo SB, Elkjær CF, Falsig H et al (2014) Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater 13:884–890. doi: 10.1038/nmat4033

Abild-Pedersen F, Greeley J, Studt F et al (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:016105. doi: 10.1103/PhysRevLett.99.016105

Logadottir A, Rod TH, Norskov JK et al (2001) The Brønsted–Evans–Polanyi Relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229–231. doi: 10.1006/jcat.2000.3087

Michaelides A, Liu Z-P, Zhang CJ et al (2003) Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J Am Chem Soc 125:3704–3705. doi: 10.1021/ja027366r

van Santen RA, Neurock M, Shetty SG (2010) Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chem Rev 110:2005–2048. doi: 10.1021/cr9001808

Wang S, Temel B, Shen J et al (2010) Universal Brønsted-Evans-Polanyi relations for C-C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal Lett 141:370–373. doi: 10.1007/s10562-010-0477-y

Wang S, Petzold V, Tripkovic V et al (2011) Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys 13:20760–20765. doi: 10.1039/c1cp20547a

Medford AJ, Vojvodic A, Hummelshøj JS, et al (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal (Accepted)

Jacobsen CJH, Dahl S, Clausen BS et al (2001) Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J Am Chem Soc 123:8404–8405. doi: 10.1021/ja010963d

Studt F, Abild-Pedersen F, Wu Q et al (2012) CO hydrogenation to methanol on Cu–Ni catalysts: theory and experiment. J Catal 293:51–60. doi: 10.1016/j.jcat.2012.06.004

Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815. doi: 10.1038/nmat1223

Greeley J, Jaramillo TF, Bonde J et al (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913. doi: 10.1038/nmat1752

Hansgen DA, Vlachos DG, Chen JG (2010) Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem 2:484–489. doi: 10.1038/nchem.626

Hummelshøj JS, Abild-Pedersen F, Studt F et al (2012) CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew Chem Int Ed Engl 51:272–274. doi: 10.1002/anie.201107947

Campbell CT (1994) Micro- and macro-kinetics : their relationship in heterogeneous catalysis. Top Catal 1:353–366

Stegelmann C, Andreasen A, Campbell CT (2009) Degree of rate control: how much the energies of intermediates and transition states control rates. J Am Chem Soc 131:8077–8082. doi: 10.1021/ja9000097

Brown WA, Kose R, King DA (1998) Femtomole adsorption calorimetry on single-crystal surfaces. Chem Rev 98:797–832. doi: 10.1021/cr9700890

Johnson RDI (2011) NIST Computational Chemistry Comparison and Benchmark Database. NIST Stand Ref, Database Number 101

Enkovaara J, Rostgaard C, Mortensen JJ et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys 22:253202. doi: 10.1088/0953-8984/22/25/253202

Hammer B, Hansen L, Nørskov J (1999) Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B 59:7413–7421. doi: 10.1103/PhysRevB.59.7413

Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. doi: 10.1021/jp047349j

Klüpfel S, Klüpfel P, Jónsson H (2012) The effect of the Perdew-Zunger self-interaction correction to density functionals on the energetics of small molecules. J Chem Phys 137:124102. doi: 10.1063/1.4752229

Peterson AA, Abild-Pedersen F, Studt F et al (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311. doi: 10.1039/c0ee00071j

Jiang T, Mowbray DJ, Dobrin S et al (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113:10548–10553. doi: 10.1021/jp811185g

Grabow LC, Hvolbæk B, Nørskov JK (2010) Understanding Trends in catalytic activity: the effect of adsorbate-adsorbate interactions for CO oxidation over transition metals. Top Catal 53:298–310. doi: 10.1007/s11244-010-9455-2

Mason S, Grinberg I, Rappe A (2004) First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Phys Rev B 69:161401. doi: 10.1103/PhysRevB.69.161401

Abild-Pedersen F, Andersson MP (2007) CO adsorption energies on metals with correction for high coordination adsorption sites—a density functional study. Surf Sci 601:1747–1753. doi: 10.1016/j.susc.2007.01.052

Shomate CH (1954) A method for evaluating and correlating thermodynamic data. J Phys Chem 58:368–372. doi: 10.1021/j150514a018

Nørskov JK, Studt F, Abild-Pedersen F, Bligaard T (2014) Fundamental concepts in heterogeneous catalysis. Wiley, New York

McQuarrie D (2000) Statistical mechanics. University Science Books, Sausalito

Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332. doi: 10.1021/ma50003a019

Vojvodic A, Calle-Vallejo F, Guo W et al (2011) On the behavior of Brønsted-Evans-Polanyi relations for transition metal oxides. J Chem Phys 134:244509. doi: 10.1063/1.3602323

Moore EH (1920) On the reciprocal of the general algebraic matrix. Bull Am Math Soc 26:385–397

Penrose R, Todd JA (1955) A generalized inverse for matrices. Math Proc Camb Philos Soc 51:406. doi: 10.1017/S0305004100030401

Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240. doi: 10.1038/376238a0

Axelsson O (1996) Iterative solution methods. Cambridge University Press, Cambridge

Xu Y, Lausche AC, Wang S et al (2013) In silico search for novel methane steam reforming catalysts. New J Phys 15:125021. doi: 10.1088/1367-2630/15/12/125021

Lausche AC, Medford AJ, Khan TS et al (2013) On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. J Catal 307:275–282. doi: 10.1016/j.jcat.2013.08.002

Medford AJ, Lausche AC, Abild-Pedersen F et al (2014) Activity and selectivity trends in synthesis gas conversion to higher alcohols. Top Catal 57:135–142. doi: 10.1007/s11244-013-0169-0

Johansson F (2010) mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.14)

Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90:046103. doi: 10.1103/PhysRevLett.90.046103

Li T-Y (1997) Numerical solution of multivariate polynomial systems. Acta Numer 6:399–436. doi: 10.1017/S0962492900002749

Gusmão GS, Christopher P (2014) A general and robust approach for defining and solving microkinetic catalytic systems. AIChE J. doi: 10.1002/aic.14627

Chandler JP, Hill DE, Spivey HO (1972) A program for efficient integration of rate equations and least-squares fitting of chemical reaction data. Comput Biomed Res 5:515–534. doi: 10.1016/0010-4809(72)90058-4

Coltrin ME, Kee RJ, Rupley FM (1991) Surface chemkin: a general formalism and software for analyzing heterogeneous chemical kinetics at a gas-surface interface. Int J Chem Kinet 23:1111–1128. doi: 10.1002/kin.550231205