Cassava wastewater valorization for the production of biosurfactants: surfactin, rhamnolipids, and mannosileritritol lipids
Tóm tắt
The global production of cassava was estimated at ca. 303 million tons. Due to this high production, the cassava processing industry (cassava flour and starch) generates approximately ca. 0.65 kg of solid residue and ca. 25.3 l of wastewater per kg of fresh processed cassava root. The composition of the liquid effluent varies according to its origin; for example, the effluent from cassava flour production, when compared to the wastewater from the starch processing, presents a higher organic load (ca. 12 times) and total cyanide (ca. 29 times). It is worthy to highlight the toxicity of cassava residues regarding cyanide presence, which could generate disorders with acute or chronic symptoms in humans and animals. In this sense, the development of simple and low-cost eco-friendly methods for the proper treatment or reuse of cassava wastewater is a challenging, but promising path. Cassava wastewater is rich in macro-nutrients (proteins, starch, sugars) and micro-nutrients (iron, magnesium), enabling its use as a low-cost culture medium for biotechnological processes, such as the production of biosurfactants. These compounds are amphipathic molecules synthesized by living cells and can be widely used in industries as pharmaceutical agents, for microbial-enhanced oil recovery, among others. Amongst these biosurfactants, surfactin, rhamnolipids, and mannosileritritol lipids show remarkable properties such as antimicrobial, biodegradability, demulsifying and emulsifying capacity. However, the high production cost restricts the massive biosurfactant applications. Therefore, this study aims to present the state of the art and challenges in the production of biosurfactants using cassava wastewater as an alternative culture medium.
Tài liệu tham khảo
Acchar W, da Silva V (2021) Ecological brick of mineral residues and cassava wastewater. In: Acchar W, da Silva V (eds) Use of cassava wastewater and scheelite residues in ceramic formulations. Springer International Publishing, Cham, pp 33–51
Agarry S, Oghenejobor K, Solomon B (2016) Bioelectricity production from cassava mill effluents using microbial fuel cell technology. Niger J Technol 35:329. https://doi.org/10.4314/njt.v35i2.13
Ahsani Arani Y, Noormohammadi Z, Rasekh B et al (2022) Evaluation of SDS-coated iron nanostructure on the gene expression of bio surfactant-producing genes by Pseudomonas aeruginosa. Eng Life Sci 22:584–593. https://doi.org/10.1002/elsc.202200002
Ahuja K, Singh S (2022) Biosurfactants market size by product. USA
Akcil A, Karahan AG, Ciftci H, Sagdic O (2003) Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Miner Eng 16:643–649. https://doi.org/10.1016/S0892-6875(03)00101-8
Alamdar N, Rasekh B, Yazdian F (2018) Effects of Fe/SDS and Au nanoparticles on P. aeruginosa bacterial growth and biosurfactant production. IET Nanobiotechnol 12:520–525. https://doi.org/10.1049/iet-nbt.2016.0260
Ambaye TG, Vaccari M, Prasad S, Rtimi S (2021) Preparation, characterization and application of biosurfactant in various industries: a critical review on progress, challenges and perspectives. Environ Technol Innov 24:102090. https://doi.org/10.1016/j.eti.2021.102090
Andrade LRS, Cruz IA, de Melo L et al (2020) Oyster shell-based alkalinization and photocatalytic removal of cyanide as low-cost stabilization approaches for enhanced biogas production from cassava starch wastewater. Process Saf Environ Prot 139:47–59. https://doi.org/10.1016/j.psep.2020.04.008
Araújo NC, Costa TF, Oliveira SJC et al (2012) Avaliação do uso de efluente de casas de farinha como ferlitizante foliar na cultura do milho (Zea mays L). Rev Eng Na Agric—Reveng 20:340–349. https://doi.org/10.13083/reveng.v20i4.313
Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494. https://doi.org/10.1016/0006-291X(68)90503-2
Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35:1559–1570. https://doi.org/10.1007/s10295-008-0460-4
Barreto M (2011) Efeito da manipueira na biomassa e nutrientes do Milho (Zea mays L.) hibrido para forragem e alterações noa atributos químicos do solo. 55
Barros FFC, Ponezi AN, Pastore GM (2008) Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J Ind Microbiol Biotechnol 35:1071–1078. https://doi.org/10.1007/s10295-008-0385-y
Bezerra MGS, Silva GGC, Difante GS et al (2017) Cassava wastewater as organic fertilizer in ‘Marandu’ grass pasture. Rev. Bras. Eng. Agríc. Ambient. 21:404–409. https://doi.org/10.1590/1807-1929/agriambi.v21n6p404-409
Bione AP, Lins AB, Rodríguez DM et al (2022) Valorization of agro-industrial by-products for sustainable production of biosurfactant by Syncephalastrum racemosum UCP 1302. Res Soc Dev 11:e58011932372. https://doi.org/10.33448/rsd-v11i9.32372
Boothroyd B, Thorn JA, Haskins RH (1956) Characterization of extravellular glycolipids produced by Ustilago sp. Can J Biochem Physiol 34:10–14
Cagri-Mehmetoglu A, Kusakli S, van de Venter M (2012) Production of polysaccharide and surfactin by Bacillus subtilis ATCC 6633 using rehydrated whey powder as the fermentation medium. J Dairy Sci 95:3643–3649. https://doi.org/10.3168/jds.2012-5385
Cao X, hong, Wang A hua, Wang C ling, et al (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362. https://doi.org/10.1016/j.cbi.2009.11.027
Cardoso É, Cardoso DC, Cristiano MP et al (2009) Use of Manihot esculenta, Crantz Processing residue as biofertilizer in corn crops. Res J Agron 3:1–8
Cavalcante Fai AE, Resende Simiqueli AP, de Andrade CJ et al (2015) Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: an integrated process. Biocatal Agric Biotechnol 4:535–542. https://doi.org/10.1016/j.bcab.2015.10.001
Ceresa C, Hutton S, Lajarin-Cuesta M et al (2020) Production of mannosylerythritol lipids (MELs) to be used as antimicrobial agents against S. aureus ATCC 6538. Curr Microbiol 77:1373–1380. https://doi.org/10.1007/s00284-020-01927-2
Chen WC, Juang RS, Wei YH (2015) Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J 103:158–169. https://doi.org/10.1016/j.bej.2015.07.009
Chisté RC, Cohen K de O (2006) Efeito do Processo da fabricação da farinha de mandioca. Efeito do Process Fabr da Farinha Mandioca 75
Coelho ALS, Feuser PE, Carciofi BAM et al (2020) Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl Microbiol Biotechnol 104:2297–2318. https://doi.org/10.1007/s00253-020-10354-z
Costa SGVAO, Lépine F, Milot S et al (2009) Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 36:1063–1072. https://doi.org/10.1007/s10295-009-0590-3
Costa AG, Watanabe Cova AM, Da L et al (2020) Use of cassava wastewater in Capsicum chinense production. Pesqui Agropecuária Trop 50:e64756. https://doi.org/10.1590/1983-40632020v5064756
Coutinho Rodrigues OH, Itokazu AG, Rörig L et al (2021) Evaluation of astaxanthin biosynthesis by Haematococcus pluvialis grown in culture medium added of cassava wastewater. Int Biodeterior Biodegradation 163:105269. https://doi.org/10.1016/j.ibiod.2021.105269
Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684. https://doi.org/10.1111/j.1365-2672.2007.03701.x
Daylin R-R, da Rosileide FSA, da Goretti SS et al (2017) Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. Afr J Microbiol Res 11:981–991. https://doi.org/10.5897/ajmr2017.8486
de Mesquita FL (2016) Manejo de Meloidogyne enterolobii em goiabeira com produtos biológicos e manipueira. Universidade de Brasília
de Andrade CJ, Barros FFC, de Andrade LM et al (2016) Ultrafiltration based purification strategies for surfactin produced by Bacillus subtilis LB5A using cassava wastewater as substrate. J Chem Technol Biotechnol 91:3018–3027. https://doi.org/10.1002/jctb.4928
de Andrade CJ, de Andrade LM, Rocco SA et al (2017) A novel approach for the production and purification of mannosylerythritol lipids (MEL) by Pseudozyma tsukubaensis using cassava wastewater as substrate. Sep Purif Technol 180:157–167. https://doi.org/10.1016/j.seppur.2017.02.045
de Carvalho JC, Borghetti IA, Cartas LC et al (2018) Biorefinery integration of microalgae production into cassava processing industry: potential and perspectives. Bioresour Technol 247:1165–1172. https://doi.org/10.1016/j.biortech.2017.09.213
de Duarte AS, Silva de ÊFFE, Rolim MM, et al (2012) Uso de diferentes doses de manipueira na cultura da alface em substituição à adubação mineral. Rev Bras Eng Agrícola e Ambient 16:262–267. https://doi.org/10.1590/s1415-43662012000300005
de Fonseca TCS, de Souza AF, dos Santos PN et al (2022) Sustainable production of biosurfactant by Issatchenkia orientalis UCP 1603 using renewable substrates. Res Soc Dev 11:e16111427174. https://doi.org/10.33448/rsd-v11i4.27174
de Maia PCVS, Rodríguez DM, de Souza AF et al (2022) Production of biosurfactant by Bacillus subtilis UCP 0999 using cassava wastewater (CWW) and waste frying oil (WFO) as renewable substrates. Res Soc Dev 11:e17011628805. https://doi.org/10.33448/rsd-v11i6.28805
de Oliveira Schmidt VK, de Souza CJ, de Oliveira D, de Andrade CJ (2021) Biosurfactant inducers for enhanced production of surfactin and rhamnolipids: an overview. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-020-02970-8
de SouzaYes FD, dos Santos TPR, Fernandes AM, Leonel M (2019) Harvest time optimization leads to the production of native cassava starches with different properties. Int J Biol Macromol 132:710–721. https://doi.org/10.1016/j.ijbiomac.2019.03.245
De Araujo LV, Freire DMG, Nitschke M (2013) Biossurfactantes: propriedades anticorrosivas, antibiofilmes e antimicrobianas. Quim Nova 36:848–858. https://doi.org/10.1590/S0100-40422013000600019
Dhali D, Coutte F, Arias AA et al (2017) Genetic engineering of the branched fatty acid metabolic pathway of Bacillus subtilis for the overproduction of surfactin C14 isoform. Biotechnol J 12:1–23. https://doi.org/10.1002/biot.201600574
Doekel S (2002) Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector system. FEMS Microbiol Lett 216:185–191
Dong H, Zhang D (2014) Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 13:1–11
Drakontis CE, Amin S (2020) Biosurfactants: formulations, properties, and applications. Curr Opin Colloid Interface Sci 48:77–90. https://doi.org/10.1016/j.cocis.2020.03.013
Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236. https://doi.org/10.1016/j.copbio.2004.03.006
Ehrhardt DD, Secato JFF, Tambourgi EB (2015) Produção de biossurfactante por Bacillus subtilis utilizando resíduo do processamento do abacaxi como substrato. Anais do XX Congresso Brasileiro de Engenharia Química. Editora Edgard Blücher, São Paulo, pp 1960–1965
Elakkiya VT, SureshKumar P, Alharbi NS et al (2020) Swift production of rhamnolipid biosurfactant, biopolymer and synthesis of biosurfactant-wrapped silver nanoparticles and its enhanced oil recovery. Saudi J Biol Sci 27:1892–1899. https://doi.org/10.1016/j.sjbs.2020.04.001
Farias CBB, Almeida FCG, Silva IA et al (2021) Production of green surfactants: market prospects. Electron J Biotechnol 51:28–39. https://doi.org/10.1016/j.ejbt.2021.02.002
Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour Technol 75:235–240. https://doi.org/10.1016/S0960-8524(00)00059-6
Fukuoka T, Morita T, Konishi M et al (2008) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant: the identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560. https://doi.org/10.1016/j.carres.2007.11.023
Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int 2011:1–6. https://doi.org/10.4061/2011/653654
He Z, Liu G, Yang X, Liu W (2016) A novel surfactant, N, N-diethyl-N’-cyclohexylthiourea: synthesis, flotation and adsorption on chalcopyrite. J Ind Eng Chem 37:107–114. https://doi.org/10.1016/j.jiec.2016.03.013
Jahan R, Bodratti AM, Tsianou M, Alexandridis P (2020) Biosurfactants, natural alternatives to synthetic surfactants: physicochemical properties and applications. Adv Colloid Interface Sci 275:102061. https://doi.org/10.1016/j.cis.2019.102061
Jauregi P, Kourmentza K (2000) A cross flow filtration apparatus. Filtr + Sep 37:29. https://doi.org/10.1016/S0015-1882(00)89238-1
Ji F, Li L, Ma S et al (2016) Production of rhamnolipids with a high specificity by Pseudomonas aeruginosa M408 isolated from petroleum-contaminated soil using olive oil as sole carbon source. Ann Microbiol 66:1145–1156. https://doi.org/10.1007/s13213-016-1203-9
Jiang J, Zu Y, Li X et al (2020) Recent progress towards industrial rhamnolipids fermentation: process optimization and foam control. Bioresour Technol 298:122394. https://doi.org/10.1016/j.biortech.2019.122394
Jiao S, Li X, Yu H et al (2017) In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol Bioeng 114:832–842. https://doi.org/10.1002/bit.26197
Jiraprasertwong A, Maitriwong K, Chavadej S (2019) Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor. Renew Energy 130:191–205. https://doi.org/10.1016/j.renene.2018.06.034
Joy S, Rahman PKSM, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem Eng J 317:232–241. https://doi.org/10.1016/j.cej.2017.02.054
Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172:224–228. https://doi.org/10.1016/j.jhazmat.2009.06.162
Konishi M, Morita T, Fukuoka T et al (2008) Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Appl Microbiol Biotechnol 78:37–46. https://doi.org/10.1007/s00253-007-1292-2
Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50–51:13–29. https://doi.org/10.1016/j.mineng.2013.05.027
Lebot V (2009) Tropical root and tuber crops. cassava, sweet potato. Yams and Aroids Exp Agric 45:382–382. https://doi.org/10.1017/S0014479709007832
Lee SM, Lee JY, Yu HP, Lim JC (2016) Synthesis of environment friendly nonionic surfactants from sugar base and characterization of interfacial properties for detergent application. J Ind Eng Chem 38:157–166. https://doi.org/10.1016/j.jiec.2016.04.019
Lied EB (2012) Tratamento de efluente industrial de fecularia utilizando macrófita aquática Eichhornia crassipes e coagulante natural. Universidade Estadual do Parana
Lima AST, Valente ECN (2017) Uso de manipueira na adubação do pimentão. Rev Craibeiras Agroecol 1:1–3
Liu G, Zhong H, Yang X et al (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115:796–814. https://doi.org/10.1002/bit.26517
Luo C, Liu X, Zhou H et al (2015) Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl Environ Microbiol 81:422–431. https://doi.org/10.1128/AEM.02921-14
Magalhães AG, Rolim MM, de Duarte AS et al (2014) Desenvolvimento inicial do milho submetido à adubação com manipueira. Rev Bras Eng Agrícola e Ambient 18:675–681. https://doi.org/10.1590/s1415-43662014000700001
Maier RM (2003) Biosurfactants: evolution and diversity in bacteria. Adv Appl Microbiol 52:101–121. https://doi.org/10.1016/S0065-2164(03)01004-9
Mari AG, Andreani CL, Tonello TU et al (2020) Biohydrogen and biomethane production from cassava wastewater in a two-stage anaerobic sequencing batch biofilm reactor. Int J Hydrogen Energy 45:5165–5174. https://doi.org/10.1016/j.ijhydene.2019.07.054
Markande AR, Patel D, Varjani S (2021) A review on biosurfactants: properties, applications and current developments. Bioresour Technol 330:124963. https://doi.org/10.1016/j.biortech.2021.124963
Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350. https://doi.org/10.1016/j.foodchem.2005.12.056
Meier TRW, Cremonez PA, Maniglia TC et al (2020) Production of biohydrogen by an anaerobic digestion process using the residual glycerol from biodiesel production as additive to cassava wastewater. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120833
Mohanty SS, Koul Y, Varjani S et al (2021) A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 20:1–13. https://doi.org/10.1186/s12934-021-01613-3
Montoro SB, Lucas J, Santos DFL, Costa MSSM (2019) Anaerobic co-digestion of sweet potato and dairy cattle manure: a technical and economic evaluation for energy and biofertilizer production. J Clean Prod 226:1082–1091. https://doi.org/10.1016/j.jclepro.2019.04.148
Morita T, Fukuoka T, Imura T, Kitamoto D (2015) Mannosylerythritol lipids: production and applications. J Oleo Sci 64:133–141. https://doi.org/10.5650/jos.ess14185
Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378. https://doi.org/10.1016/j.cocis.2009.06.005
Nakano MM, Marahiel MA, Zuber P (1988) Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170:5662–5668. https://doi.org/10.1128/jb.170.12.5662-5668.1988
Nashida J, Nishi N, Takahashi Y et al (2018) Systematic and stereoselective total synthesis of mannosylerythritol lipids and evaluation of their antibacterial activity. J Org Chem 83:7281–7289. https://doi.org/10.1021/acs.joc.8b00032
Nasu ÉGC, Pires E, Formentini HM, Furlanetto C (2010) Efeito de manipueira sobre Meloidogyne incognita em ensaios in vitro e em tomateiros em casa de vegetação. Trop Plant Pathol 35:032–036. https://doi.org/10.1590/s1982-56762010000100005
Nazareth TC, Zanutto CP, Maass D et al (2021) Impact of oxygen supply on surfactin biosynthesis using brewery waste as substrate. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105372
Nitschke M, Pastore GM (2004) Biosurfactant production by Bacillus subtilis using cassava-processing effluent. Appl Biochem Biotechnol 112:163–172. https://doi.org/10.1385/ABAB:112:3:163
Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336–341. https://doi.org/10.1016/j.biortech.2005.02.044
Niu Y, Wu J, Wang W, Chen Q (2019) Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozyma aphidis ZJUDM34. Food Sci Nutr 7:937–948. https://doi.org/10.1002/fsn3.880
Ongena M, Jacques P (2007) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiol. https://doi.org/10.1016/j.tim.2007.12.009
Padi RK, Chimphango A (2021) Comparative sustainability assessments for integrated cassava starch wastes biorefineries. J Clean Prod 290:125171. https://doi.org/10.1016/j.jclepro.2020.125171
Paraszkiewicz K, Bernat P, Kuśmierska A et al (2018) Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J Environ Manage 209:65–70. https://doi.org/10.1016/j.jenvman.2017.12.033
Pathania AS, Jana AK (2020) Utilization of waste frying oil for rhamnolipid production by indigenous Pseudomonas aeruginosa: Improvement through co-substrate optimization. J Environ Chem Eng 8:104304. https://doi.org/10.1016/j.jece.2020.104304
Patil YB, Paknikar KM (2000) Biodetoxification of silver-cyanide from electroplating industry wastewater. Lett Appl Microbiol 30:33–37. https://doi.org/10.1046/j.1472-765x.2000.00648.x
Peres S, Monteiro MR, Ferreira ML et al (2019) Anaerobic digestion process for the production of biogas from cassava and sewage treatment plant sludge in Brazil. Bioenergy Res 12:150–157. https://doi.org/10.1007/s12155-018-9942-z
Peters D, Ngai DD (2005) Agro-processing waste assessment and management in agro-processing waste assessment and management in peri-urban Hanoi, Vietnam. 37–41. https://doi.org/10.1300/J064v25n01
Pinto Zevallos DM, Pereira Querol M, Ambrogi BG (2018) Cassava wastewater as a natural pesticide: current knowledge and challenges for broader utilisation. Ann Appl Biol 173:191–201. https://doi.org/10.1111/aab.12464
Pinto P (2008) Tratamento de manipueira de fecularia em biodigestor anaeróbio para disposição em corpo receptor, rede pública ou uso em fertirrigação: Dissertação para obtenção do título de Mestre em Agronomia. Universidade Estadual Paulista “Júlio Mesquita Filho 9:87
Potivichayanon S, Toensakes R, Supromin N, Seaung K (2020) Removal of high levels of cyanide and COD from cassava industrial wastewater by a fixed-film sequencing batch reactor. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04642-7
Radzuan MN, Banat IM, Winterburn J (2017) Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Bioresour Technol 225:99–105. https://doi.org/10.1016/j.biortech.2016.11.052
Rajbhandari BK, Annachhatre AP (2004) Anaerobic ponds treatment of starch wastewater: case study in Thailand. Bioresour Technol 95:135–143. https://doi.org/10.1016/j.biortech.2004.01.017
RamosFilho REB (2021) Ecological brick of mineral residues and cassava wastewater. In: Acchar W, da Silva V (eds) Use of cassava wastewater and scheelite residues in ceramic formulations. Springer International Publishing, Cham, pp 33–51
Rangarajan V, Clarke KG (2016) Towards bacterial lipopeptide products for specific applications—a review of appropriate downstream processing schemes. Process Biochem 51:2176–2185. https://doi.org/10.1016/j.procbio.2016.08.026
Ranmadugala D, Ebrahiminezhad A, Manley-Harris M et al (2017) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem 62:231–240. https://doi.org/10.1016/j.procbio.2017.07.003
Ribeiro JSE, Sant’Ana da AMS, Martini M, et al (2019) Rhodotorula glutinis cultivation on cassava wastewater for carotenoids and fatty acids generation. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2019.101419
Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236. https://doi.org/10.1046/j.1462-2920.2001.00190.x
Routhu SR, Nagarjuna Chary R, Shaik AB et al (2019) Induction of apoptosis in lung carcinoma cells by antiproliferative cyclic lipopeptides from marine algicolous isolate Bacillus atrophaeus strain AKLSR1. Process Biochem 79:142–154. https://doi.org/10.1016/j.procbio.2018.12.010
Sahebnazar Z, Mowla D, Karimi G (2018) Enhancement of Pseudomonas aeruginosa growth and rhamnolipid production using iron-silica nanoparticles in low-cost medium. J Nanostruct 8:1–10. https://doi.org/10.22052/JNS.2018.01.001
Sajid M, Ahmad Khan MS, Singh Cameotra S, Safar Al-Thubiani A (2020) Biosurfactants: potential applications as immunomodulator drugs. Immunol Lett 223:71–77. https://doi.org/10.1016/j.imlet.2020.04.003
Sałek K, Euston SR (2019) Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem 85:143–155. https://doi.org/10.1016/j.procbio.2019.06.027
Santos A (2014) Avaliação ambiental estratégica aplicada á cadeia produtiva da mandioca na Microrregião Sudoeste da Bahia
Sarubbo LA, da Silva MGC, Durval IJB et al (2022) Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J. https://doi.org/10.1016/j.bej.2022.108377
Shu Q, Wei T, Lu H et al (2020) Mannosylerythritol lipids: dual inhibitory modes against Staphylococcus aureus through membrane-mediated apoptosis and biofilm disruption. Appl Microbiol Biotechnol 104:5053–5064. https://doi.org/10.1007/s00253-020-10561-8
Silva J (2009) Desempenho do Reator Anaeróbio Horizontal com Chicanas no tratamento da manipueira em fases separadas e estabilização do pH com conchas de sururu. Univ Fed Alagoas—UFAL 100
Simiqueli APR, De Andrade CJ, Fai AEC (2017) Current status and trends in mannosylerylthritol lipids: Production, purification and potential applications. Biosurfactants Occur Appl Res 149–171
Sun L, Wan S, Yu Z et al (2012) Anaerobic biological treatment of high strength cassava starch wastewater in a new type up-flow multistage anaerobic reactor. Bioresour Technol 104:280–288. https://doi.org/10.1016/j.biortech.2011.11.070
Sun W, Zhu B, Yang F et al (2021) Optimization of biosurfactant production from Pseudomonas sp CQ2 and its application for remediation of heavy metal contaminated soil. Elsevier Ltd
Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 17:1–13. https://doi.org/10.1186/s12934-018-0938-3
Thanwised P, Wirojanagud W, Reungsang A (2012) Effect of hydraulic retention time on hydrogen production and chemical oxygen demand removal from tapioca wastewater using anaerobic mixed cultures in anaerobic baffled reactor (ABR). Int J Hydrogen Energy 37:15503–15510. https://doi.org/10.1016/j.ijhydene.2012.02.068
Tosato V, Albertini AM, Zotti M et al (1997) Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:3443–3450. https://doi.org/10.1099/00221287-143-11-3443
Trevisan AP, Lied EB, Fronza FL et al (2019) Cassava wastewater treatment by coagulation/flocculation using moringa oleifera seeds. Chem Eng Trans 74:367–372. https://doi.org/10.3303/CET1974062
Tumwesigye KS, Oliveira JC, Sousa-Gallagher MJ (2016) Integrated sustainable process design framework for cassava biobased packaging materials: critical review of current challenges, emerging trends and prospects. Trends Food Sci Technol 56:103–114. https://doi.org/10.1016/j.tifs.2016.08.001
Varjani S, Rakholiya P, Yong Ng H et al (2021) Bio-based rhamnolipids production and recovery from waste streams: status and perspectives. Bioresour Technol 319:124213. https://doi.org/10.1016/j.biortech.2020.124213
Vicente R, de Andrade CJ, de Oliveira D, Ambrosi A (2021) A prospection on membrane-based strategies for downstream processing of surfactin. Chem Eng J 415:129067. https://doi.org/10.1016/j.cej.2021.129067
Vieites RL (1998) Efeitos da adubação com manipueira sobre o rendimento e qualidade dos frutos de tomate. Pesqui Agropecu Bras 33:1239–1243
Wadjeam P, Reungsang A, Imai T, Plangklang P (2019) Co-digestion of cassava starch wastewater with buffalo dung for bio-hydrogen production. Int J Hydrogen Energy 44:14694–14706. https://doi.org/10.1016/j.ijhydene.2019.04.138
Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154. https://doi.org/10.1016/j.bej.2005.08.028
Weinrauch Y, Guillen N, Dubnau DA (1989) Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J Bacteriol 171:5362–5375. https://doi.org/10.1128/jb.171.10.5362-5375.1989
Wosiacki G, Cereda MP (2002) Valorização De Resíduos Do Processamento De Mandioca. Publ UEPG—Ciencias Exatas e Da Terra, Agrar e Eng 8:27–43. https://doi.org/10.5212/publicatio.v8i01.762
Wu Q, Zhi Y, Xu Y (2019) Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab Eng 52:87–97. https://doi.org/10.1016/j.ymben.2018.11.004
Xu Y, Cai D, Zhang H et al (2020) Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 90:50–57. https://doi.org/10.1016/j.procbio.2019.11.017
Yang N, Wu Q, Xu Y (2020) Fe nanoparticles enhanced surfactin production in Bacillus amyloliquefaciens. ACS Omega 5:6321–6329. https://doi.org/10.1021/acsomega.9b03648
Zanotto AW, Valério A, de Andrade CJ, Pastore GM (2019) New sustainable alternatives to reduce the production costs for surfactin 50 years after the discovery. Appl Microbiol Biotechnol 103:8647–8656. https://doi.org/10.1007/s00253-019-10123-7
Zempulski DA (2013) Produção de ácidos graxos voláteis por fermentação anaeróbia de manipueira e de permeado de soro de queijo. Universidade Estadual do Oeste do Paraná
Zhao F, Han S, Zhang Y (2020) Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates. Bioresour Technol 295:122269. https://doi.org/10.1016/j.biortech.2019.122269
Zhu Z, Zhang F, Wei Z et al (2013) The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J Environ Manage 127:96–102. https://doi.org/10.1016/j.jenvman.2013.04.017