Case study of a water bioengineering construction site in Austria. Ecological aspects and application of an environmental life cycle assessment model

M. von der Thannen1, S. Hoerbinger1, C. Muellebner2, H. Biber2, H. P. Rauch1
1Department of Civil Engineering and Natural Hazards, Institute for Soil Bioengineering and Landscape Construction, University of Natural Resources and Life Sciences, Vienna, Austria
2via donau - Österreichische Wasserstraßen-Gesellschaft mbH, Vienna, Austria

Tóm tắt

Recently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.

Tài liệu tham khảo

Rey, F., Bifulco, C., Bischetti, G.B., Bourrier, F., de Cesare, G., Florineth, F., Graf, F., Marden, M., Mickovski, S.B., Phillips, C., Peklo, K., Poesen, J., Polster, D., Preti, F., Rauch, H.P., Raymond, P., Sangalli, P., Tardio, G., Stokes, A.: Soil and water bioengineering: practice and research needs for reconciling natural hazard control and ecological restoration. Sci. Total Environ. 648, 1210–1218 (2018). https://doi.org/10.1016/j.scitotenv.2018.08.217 Rauch, H.P., Sutili, F., Hoerbinger, S.: Installation of a riparian forest by means of soil bio engineering techniques—Monitoring results from a river restoration work in Southern Brazil. Open J. For. 4, 161–169 (2014) Howell, J.: Roadside bio-engineering. His Majesty’s Government of Nepal, Kathmandu (1999) Lammeranner, W., Laaha, G., Rauch, H.P.: Implementation and monitoring of soil bioengineering measures at a landslide in the middle mountains of Nepal. Plant Soil 278, 159–170 (2005) Petrone, A., Preti, F.: Suitability of soil bioengineering techniques in Central America: a case study in Nicaragua. Hydrol. Earth Syst. Sci. 12, 1241–1248 (2008) Florineth, F.: Pflanzen statt Beton. Sichern und Gestalten mit Pflanzen Patzer Verlag, Berlin-Hannover (2012) Gerstgraser, C.: Ingenieurbiologische Bauweisen an Fließgewässern. Grundlagen zu Bau, Belastbarkeiten und Wirkungsweisen. Wien, Österr. Kunst- u. Kulturverlag (2000) Zeh, H.: Ingenieurbiologie: Handbuch Bautypen. Zürich: vdf Hochschulverl (2007) Begemann, W. & Schiechtl, H. M.: Ingenieurbiologie: Handbuch zum ökologischen Wasser- und Erdbau. Bauverlag GmbH, Wiesbaden und Berlin (1994) Gray, D.H., Sotir, R.B.: Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. Wiley, New York (1996) Schiechtl, H. M. & Stern, R.: Handbuch für naturnahen Erdbau. Eine Anleitung für ingenieurbiologische Bauweisen. Österreichischer Agrarverlag, Wien (1992) Schiechtl, H. M. & Stern, R.: Handbuch für naturnahen Wasserbau. Eine Anleitung für ingenieurbiologische Bauweisen. Österreichischer Agrarverlag, Wien (1994) Zeh, H.: Ingenieurbiologische Bauweisen im naturnahen Wasserbau. Praxishilfe. Umwelt-Wissen Nr. 1004. Bundesamt für Umwelt (BAFU), Bern (2010) Giupponi, L., Bischetti, G.B., Giorgi, A.: A proposal for assessing the success of soil bioengineering work by analysing vegetation: results of two case studies in the Italian Alps. Landsc. Ecol. Eng. 13, 305–318 (2017) Mickovski, S.B., Thomson, C.S.: Developing a framework for the sustainability assessment of eco-engineering measures. Ecol. Eng. 109, 145–160 (2017) Begon, M., Howarth, R.W., Townsend, C.R.: Ökologie. Springer, Berlin Heidelberg (2017) Tansley, A.G.: The problems of ecology. N. Phytol 3(8), 191–200 (1904) Elton, C.S.: Animal Ecology. Sidgwick & Jackson Ltd., London (1927) Ricklefs, R. E.: Ecology. Thomas Nelson & Sons Ltd, London (1973) Townsend, C. R., Begon, M. & Harper, J. L.: Essentials of ecology. Oxford: Blackwell Publishing. 530 pp, paperback. ISBN 1-40510-328-0 (2003) von der Thannen, M., Hoerbinger, S., Paratscha, R., Smutny, R., Lampalzer, T., Strauss, A., Rauch, H.P.: Development of an environmental life cycle assessment model for soil bioengineering constructions. Eur. J. Environ. Civ. Eng. (2017). https://doi.org/10.1080/19648189.2017.1369460 ISO 14040:2006. Environmental management - Life cycle assessment - Principles and framework. ISO 14040:2006 07 01 (Vol. ISO 14040:2006 ). Geneva: International Organization for Standardization (ISO) (2006) CEN 2011. EN 15978: 2011 11 - Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method Planning & implementation of construction projects, Buildings, Other buildings. DIN EN 15978. Brussels: European Committee for Standardisation (CEN) (2011) CEN 2013. EN 15804:2012+A1:2013–11 - Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products planning & implementation of construction projects, Building construction, Other aspects. Brussels: European Committee for Standardisation (CEN) (2013) GEBAUER, S., GRUNDER, H. T., IDEL, M., KHORASANI, R., LÜHR, H. P. & RIETH, U.: Eisensilikat-Gestein und Natursteine im Wasserbau. Fachzeitschrift: Binnenschifffahrt 55(3), 82–88 (2001) Noda, R., Kayo, C., Sasaki, T., Takaoku, S.: Evaluation of CO2 emissions reductions by timber check dams and their economic effectiveness. J. Wood Sci. 60, 461–472 (2014) Storesund, R., Massey, J. & Kim, Y.: Life cycle impacts for concrete retaining walls vs. bioengineered slopes. In: Reddy, K.R., Khire, M.V., Alshawabkeh, A.N. (eds.) GeoCongress 2008: Geosustainability and Geohazard Mitigation, pp. 875–882. New Orleans, LA, 2008. ISBN (print): 9780784409718 (2008) PARATSCHA, R., VON DER THANNEN, M., SMUTNY, R., LAMPALZER, T., STRAUSS, A. & RAUCH, H. P.: Screening LCA of torrent control structures in Austria. The International Journal of Life Cycle Assessment (2018). https://doi-1org-100137b1j0c71.pisces.boku.ac.at/https://doi.org/10.1007/s11367-018-1501-5 EFIB - Europäische Richtlinie für Ingenieurbiologie/European Guidelines for Soil and Water bioengineering/Directrices Europeas de Bioingeniería del Paisaje/Directrizes Europeias de Engenharia Natural/Directives Européennes pour le Génie Biologique/Direttiva Europea per l'Ingegneria Naturalistica. In: INGENIEURBIOLOGIE, E. F. F. (ed.). Aachen : Gesellschaft für Ingenieurbiologie e.V. (2015) BMLFUW (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft): Technische Richtlinien für die Bundeswasserbauverwaltung RIWA-T. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien (2015) Bergmeister, K., Suda, J., Hübl, J. & Rudolf-Miklau, F.: Beton Kalender. Schutzbauwerke gegen Wildbachgefahren. Ernst W. & Sohn Verlag, Berlin, ISBN: 978-3-433-03301-2 (2008) Suda, J., Rudolf-Miklau, F. (2009) Rund um den Lebenszyklus von Schutzbauwerken: Schadenshäufigkeit, Zustandsbewertung und Dauerhaftigkeit. Wildbach- und Lawinenverbau, 73. Jg.,S. 163. Verein der Diplomingenieure der wildbach und lawinenverbauung Österreichs, Villach. Böll, A., Greber, W., Graf, F. & Rickli, C. (1999) Holzkonstruktionen im Wildbach-, Hang- und Runsenverbau. Berichte der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft. Birmersdorf BMLFUW: Richtlinien - für die Wirtschaftlichkeitsuntersuchung und Priorisierung von Maßnahmen der Wildbach- und Lawinenverbauung gemäß § 3 Abs. 2 Z 3 Wasserbautenförderungsgesetz 1985. Teil I: Kosten-Nutzen-Untersuchung (KNU) und standardisierte Nutzenuntersuchung: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion Forstwesen, Marxergasse 2, 1030 Wien (2006) BAFU. EconoMe 3.0 - Richtwerte zur Bestimmung der jährlichen Kosten. In: BUNDESAMT FÜR UMWELT BAFU, A. G. & SBB, S. B. (Eds.). 3003 Bern (2015) Winter, L., Lehmann, A., Finogenova, N., Finkbeiner, M.: Including biodiversity in life cycle assessment—State of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017). https://doi.org/10.1016/j.eiar.2017.08.006 Bischetti, G.B., Di Fi Dio, M., Florineth, F.: On the origin of soil bioengineering. Landsc. Res. 39, 583–595 (2014). https://doi.org/10.1080/01426397.2012.730139 Hacker, E., Johannsen, R. (2012) Ingenieurbiologie. Ulmer Verlag, Stuttgart Patt, H., Jürging, P., Kraus, W. (2011) Naturnaher Wasserbau. Entwicklung und Gestaltung von Fließgewässern. Springer, Heidelberg