Case report: hydroquinone and/or glutaraldehyde induced acute myeloid leukaemia?
Tóm tắt
Exposures to high doses of irradiation, to chemotherapy, benzene, petroleum products, paints, embalming fluids, ethylene oxide, herbicides, pesticides, and smoking have been associated with an increased risk of acute myelogenous leukemia (AML). Although there in no epidemiological evidence of relation between X-ray developer, fixer and replenisher liquids and AML, these included glutaraldehyde which has weakly associated with lymphocytic leukemia in rats and hydroquinone has been increasingly implicated in producing leukemia, causing DNA and chromosomal damage, inhibits topo-isomerase II, alter hematopoiesis and inhibit apoptosis of neoplastic cells. Two white females (A and B) hired in 1985 as medical radiation technologists in a primary care center, in Greece. In July 2001, woman A, 38-years-old, was diagnosed as having acute monocytic leukaemia (FAB M5). The patient did not respond to therapy and died threeweeks later. In August 2001, woman B, 35-year-old, was diagnosed with acute promyelocytic leukaemia (FAB M3). Since discharge, she is in continuous complete remission. Both women were non smokers without any medical history. Shortly after these incidents official inspectors and experts inspected workplace, examined equipment, archives of repairs, notes, interviewed and monitored employees. They concluded that shielding was inadequate for balcony's door but personal monitoring did not show any exceeding of TLV of 20 mSv yearly and cytogenetics analysis did not reveal findings considered to be characteristics of ionizing exposure. Equipment for developing photos had a long list of repairs, mainly leakages of liquids and increases of temperature. On several occasions the floor has been flooded especially during 1987–1993 and 1997–2001. Inspection confirmed a complete lack of ventilation and many spoiled medical x-ray films. Employees reported that an "osmic" level was continuously evident and frequently developed symptoms of respiratory irritation and dizziness. The findings support the hypothesis that the specific AML cases might have originated from exposure to chemicals, especially hydroquinone and/or glutaraldehyde. The report also emphasises the crucial role of inspection of facilities and enforcement of compliance with regulations in order to prevent similar incidents.
Tài liệu tham khảo
Blair A, Zheng T, Linos A, Stewart PA, Zhang YW, Cantor KP: Occupation and leukemia: a population-based case-control study in Iowa and Minnesota. Am J Ind Med 2001,40(1):3–14. 10.1002/ajim.1066
Sigurdson AJ, Doody MM, Rao RS, Freedman DM, Alexander BH, Hauptmann M, Mohan AK, Yoshinaga S, Hill DA, Tarone R, Mabuchi K, Ron E, Linet MS: Cancer incidence in the U.S. radiologic technologists health study, 1983–1998. Cancer 2003, 97: 3080–9. 10.1002/cncr.11444
Wang JX, Zhang LA, Li BX, Zhao YC, Wang ZQ, Zhang JY, Aoyama : Cancer incidence and risk estimation among medical x-ray workers in China, 1950–1995. Health Phys 2002,82(4):455–66. 10.1097/00004032-200204000-00004
Andersson M, Engholm G, Ennow K, Jessen KA, Storm HH: Cancer risk among staff at two radiotherapy departments in Denmark. Br J Radiol 1991,64(761):455–60.
Yoshinaga S, Aoyama T, Yoshimoto Y, Sugahara T: Cancer mortality among radiological technologists in Japan: updated analysis of follow-up data from 1969 to 1993. J Epidemiol 1999,9(2):61–72.
Sont WN, Zielinski JM, Ashmore JP, Jiang H, Krewski D, Fair ME, Band PR, Letourneau EG: First Analysis of Cancer Incidence and Occupational Radiation Exposure Based on the National Dose Registry of Canada. Am J Epidemiol 2001,153(4):309–18. 10.1093/aje/153.4.309
Linet MS, Freedman DM, Mohan AK, Doody MM, Ron E, Mabuchi K, Alexander BH, Sigurdson A, Hauptmann M: Incidence of haematopoietic malignancies in US radiologic technologists. Occup Environ Med 2005,62(12):861–7. 10.1136/oem.2005.020826
Joseph P, Klein-Szanto AJ, Jaiswal AK: Hydroquinones cause specific mutations and lead to cellular transformator and in vivo tumorgenesis. Br J Cancer 1998,78(3):312–20.
Westerhof W, Kooyers TJ: Hydroquinone and its analogues in dermatology – a potential health risk. J Cosmet Dermat 2005,4(2):55–59. 10.1111/j.1473-2165.2005.40202.x
Thomas DJ, Reasor MJ, Wierda D: Marcophage regulation of myolopoiesis is altered by exposure to the benzene metabolite hydroquinone. Toxicol Appl Pharmacol 1989,97(3):440–53. 10.1016/0041-008X(89)90249-4
Stillman WS, Varella-Garcia M, Irons RD: The benzene metabolite, hydroquinone, selectively induces 5q31 and 7 in human CD34+CD-bone marrow cells. Exp Hematol 2000,28(2):169–76. 10.1016/S0301-472X(99)00144-7
Silva Mdo C, Caspar J, Duarte Silva I, Faber A, Rueff J: GSTMl, GSTTl, and GSTPl genotypes and the genotoxicity of hydroquinone in human lymphocytes. Environ Mol Mutagen 2004,43(4):258–64. 10.1002/em.20015
Zheng JH, Pyatt DW, Gross SA, Le AT, Kerzic PJ, Irons RD: Hydroquinone modulates the GM-CSF signaling pathway in TF-1 cells. Leukemia 2004,18(7):1296–304. 10.1038/sj.leu.2403389
Lindsey RH Jr, Bender RP, Osheroff N: Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem Res Toxicol 2005,18(4):761–70. 10.1021/tx049659z
Hazel BA, Baum C, Kalf GF: Hydroquinone, a bioreactive metabolite of benzene, inhibits apoptosis in myeloblasts. Stem Cells 1996,14(6):730–42.
Kuo M, Shiah S, Wang C, Chuang S: Suppression of apoptosis by Bcl-2 to enhance benzene metabolites induced oxidative DNA damage and mutagenesis: a possible mechanism of carcinogenesis. Mol Pharmacol 1999,55(5):894–901.
Ibuki Y, Goto R: Dysregulation of apoptosis by benzene metabolites and their relationships with carcinogenesis. Biochim Biophys Acta 2004,1690(1):11–21.
McDonald TA, Holland NT, Skibola C, Duramad P, Smith MT: Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia 2001, 15: 10–20. 10.1038/sj.leu.2401981
DeCaprio AP: The toxicology of hydroquinone – relevance to occupational and environmental exposure. Crit Rev Toxicol 1999,29(3):283–330. 10.1080/10408449991349221
Hester SD, Barry WT, Zou F, Wolf DC: Transcriptomic analysis of F344 rat nasal epithelium suggests that the lack of carcinogenic response to glutaraldehyde is due to its greater toxicity compared to formaldehyde. Toxicol Pathol 2005,33(4):415–24.
National Cancer Institute SEER Program [http://www.seer.cancer.gov]
OECD, SIDS Hydroquinone: UNEP Publications; 1997.
Gowans ID, Lorimore SA, McIlrath JM, Wright EG: Genotype-dependent induction of transmissible chromosomal instability by gamma-radiation and the benzene metabolite hydroquinone. Cancer Res 2005,65(9):3527–30. 10.1158/0008-5472.CAN-04-4242
Hatzi VI, Terzoudi GI, Malik SI, Pantelias GE, Makropoulos V: Combined cytogenetic action of hydroquinone and ionising radiation as analysed in metaphase and G2-phase peripheral blood lymphocytes. 35th annual Meeting of European Mutagen Society Environment and human genetic disease-Causes, mechanisms and effects 2005.
Spicer J, Hay DM, Gordon M: Workplace exposure and reported health in New Zealand diagnostic radiographers. Australas Radiol 1986,30(3):281–6.
Smedley J, Inskip H, Wield G, Coggon D: Work related respiratory symptoms in radiographers. Occup Environ Med 1996,53(7):450–4.
Nallon AM, Herity B, Brennan PC: Do symptomatic radiographers provide evidence for "darkroom disease"? Occup Med (London) 2000,50(1):39–42.
Dimich-Ward H, Wymer M, Kennedy S, Teschke K, Rousseau R, Chan-Yeung M: Excess of Symptoms Among Radiographers. Am J Ind Med 2003, 43: 132–41. 10.1002/ajim.10176
Scobbie E, Dabill DW, Groves JA: Chemical pollutants in X-ray film processing departments. Ann Occup Hyg 1996,40(4):423–35. 10.1016/0003-4878(95)00091-7
Teschke K, Chow Y, Brauer M, Chessor E, Hirtle B, Kennedy SM, Yeung MC, Ward HD: Exposures and their determinants in radiographic film processing. Am Ind Hyg Assoc J 2002,63(1):11–21.
Liss GM, Tarlo SM, Doherty J, Purdham J, Greene J, McCaskell L, Kerr M: Physician diagnosed asthma, respiratory symptoms, and associations with workplace tasks among radiographers in Ontario. Occup Environ Med 2003,60(4):254–61. 10.1136/oem.60.4.254
Hewitt PJ: Occupational health problems in processing of X-ray photographic films. Ann Occup Hyg 1993,37(3):287–95.
Leinster P, Baum JM, Baxter PJ: An assessment of exposure to glutaraldehyde in hospitals: typical exposure levels and recommended control measures. Br J Ind Med 1993,50(2):107–11.
Niven KJ, Cherrie JW, Spencer J: Estimation of exposure from spilled glutaraldehyde solutions in a hospital setting. Ann Occup Hyg 1997,41(6):691–8. 10.1016/S0003-4878(97)00029-X