Carryover effects of long-term high water temperatures on fitness-related traits of the offspring of the sea urchin Strongylocentrotus intermedius
Tài liệu tham khảo
Agatsuma, 2020, Strongylocentrotus intermedius, 609
Agrawal, 1999, Transgenerational induction of defences in animals and plants, Nature, 401, 60, 10.1038/43425
Brothers, 2015, The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle's lantern reflex of the sea urchin Lytechinus variegatus, J. Exp. Mar. Biol. Ecol., 467, 33, 10.1016/j.jembe.2015.02.019
Byrne, 2014, Warming influences Mg2+ content, while warming and acidification influence calcification and test strength of a sea urchin, Environ. Sci. Technol., 48, 12620, 10.1021/es5017526
Chang, 2012, Estimates of heritabilities and genetic correlations for growth and gonad traits in the sea urchin Strongylocentrotus intermedius, Aquacult. Res., 43, 271, 10.1111/j.1365-2109.2011.02825.x
Chang, 2016, Family growth and survival response to two simulated water temperature environments in the sea urchin Strongylocentrotus intermedius, Int. J. Mol. Sci., 17, 1356, 10.3390/ijms17091356
Chirgwin, 2018, How does parental environment influence the potential for adaptation to global change?, Proc. R. Soc. B. Biol. Sci., 285, 20181374, 10.1098/rspb.2018.1374
Collard, 2016, The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations, ICES J. Mar. Sci., 73, 727, 10.1093/icesjms/fsv018
Currey, 1989, Biomechanics of mineralized skeletons, Short Courses in Geology, 5, 11
Ding, 2020, Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: new insights into the stock enhancement, Aquaculture, 519, 734873, 10.1016/j.aquaculture.2019.734873
Donelan, 2021, Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer, Ecol. Appl., 10.1002/eap.2315
Foo, 2016, Acclimatization and adaptive capacity of marine species in a changing ocean, Adv. Mar. Biol., 74, 69, 10.1016/bs.amb.2016.06.001
Hu, 2020, Effects of the brown algae Sargassum horneri and Saccharina japonica on survival, growth and resistance of small sea urchins Strongylocentrotus intermedius, Sci. Rep., 10, 12495, 10.1038/s41598-020-69435-8
Hu, 2020, Effects of macroalgae Gracilaria lemaneiformis and Saccharina japonica on growth and gonadal development of the sea urchin Strongylocentrotus intermedius: new insights into the aquaculture management in southern China, Aquacult. Rep., 17, 100399
Hyman, 1955
Johnson, 2002, Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins, Proc. Roy. Soc. B., 269, 215, 10.1098/rspb.2001.1881
Lawrence, 2019, Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China, Aquacult. Int., 27, 1, 10.1007/s10499-018-0319-2
Meyers, 2008, Biological materials: structure and mechanical properties, Prog. Mater. Sci., 53, 1, 10.1016/j.pmatsci.2007.05.002
Ross, 2016, Transgenerational responses of molluscs and echinoderms to changing ocean conditions, ICES J. Mar. Sci., 73, 537, 10.1093/icesjms/fsv254
Shi, 2020, Transcriptomes shed light on transgenerational and developmental effects of ocean warming on embryos of the sea urchin Strongylocentrotus intermedius, Sci. Rep., 10, 7931, 10.1038/s41598-020-64872-x
Verling, 2002, Covering behaviour in Paracentrotus lividus: is light important?, Mar. Biol., 140, 391, 10.1007/s002270100689
Zhang, 2017, Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius, PeerJ, 5, 10.7717/peerj.3122
Zhao, 2018, Multilevel effects of long-term elevated temperature on fitness related traits of the sea urchin Strongylocentrotus intermedius, Bull. Mar. Sci., 94, 1483, 10.5343/bms.2017.1180
Zhao, 2018, Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius, Ecotoxicol. Environ. Saf., 151, 212, 10.1016/j.ecoenv.2018.01.014