Carrier grain boundary scattering in thermoelectric materials

Energy and Environmental Science - Tập 15 Số 4 - Trang 1406-1422
Chaoliang Hu1, Kaiyang Xia1, Chenguang Fu1, Xinbing Zhao1, Tiejun Zhu1
1State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Tóm tắt

This review gives a comprehensive understanding of carrier grain boundary scattering in thermoelectric materials. Moreover, the difference between grain boundary scattering and ionized impurity scattering and how to distinguish them are highlighted.

Từ khóa


Tài liệu tham khảo

Zebarjadi, 2012, Energy Environ. Sci., 5, 5147, 10.1039/C1EE02497C

Zhao, 2014, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E

He, 2017, Science, 357, eaak9997, 10.1126/science.aak9997

Wang, 2021, Innovation, 2, 100180

Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090

Zhu, 2017, Adv. Mater., 29, 1605884, 10.1002/adma.201605884

Pei, 2012, Adv. Mater., 24, 6125, 10.1002/adma.201202919

Fu, 2020, APL Mater., 8, 040913, 10.1063/5.0005481

Qin, 2021, Science, 373, 556, 10.1126/science.abi8668

Zheng, 2017, ACS Energy Lett., 2, 563, 10.1021/acsenergylett.6b00671

Chen, 2017, Adv. Mater., 29, 1606768, 10.1002/adma.201606768

Roychowdhury, 2021, Science, 371, 722, 10.1126/science.abb3517

Heremans, 2008, Science, 321, 554, 10.1126/science.1159725

Pei, 2011, Nature, 473, 66, 10.1038/nature09996

Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601

Dong, 2019, Energy Environ. Sci., 12, 1396, 10.1039/C9EE00317G

Wang, 2022, Mater. Adv., 3, 734, 10.1039/D1MA00780G

Pei, 2012, Energy Environ. Sci., 5, 7963, 10.1039/c2ee21536e

Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G

Imasato, 2019, Energy Environ. Sci., 12, 965, 10.1039/C8EE03374A

Xiao, 2020, J. Am. Chem. Soc., 142, 4051, 10.1021/jacs.0c00306

Gibbs, 2017, npj Comput. Mater., 3, 8, 10.1038/s41524-017-0013-3

Li, 2021, Nat. Commun., 12, 5408, 10.1038/s41467-021-25722-0

Delaire, 2011, Nat. Mater., 10, 614, 10.1038/nmat3035

Nielsen, 2013, Energy Environ. Sci., 6, 570, 10.1039/C2EE23391F

Lee, 2014, Nat. Commun., 5, 3525, 10.1038/ncomms4525

Qiu, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 15031, 10.1073/pnas.1410349111

Poudel, 2008, Science, 320, 634, 10.1126/science.1156446

Wang, 2008, Appl. Phys. Lett., 93, 193121, 10.1063/1.3027060

Biswas, 2012, Nature, 489, 414, 10.1038/nature11439

Hu, 2012, J. Mater. Chem., 22, 16484, 10.1039/c2jm32916f

Liu, 2017, Mater. Today Phys., 1, 50, 10.1016/j.mtphys.2017.06.001

Zhu, 2020, Energy Environ. Sci., 13, 2106, 10.1039/D0EE01349H

Zhao, 2017, Nature, 549, 247, 10.1038/nature23667

Mori, 2017, Small, 13, 1702013, 10.1002/smll.201702013

Sun, 2021, Innovation, 2, 100101

Sun, 2021, Rep. Prog. Phys., 84, 096501, 10.1088/1361-6633/ac105f

Zhao, 2005, Appl. Phys. Lett., 86, 062111, 10.1063/1.1863440

Li, 2012, Energy Environ. Sci., 5, 7188, 10.1039/c2ee21274a

Zhang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 13261, 10.1073/pnas.1305735110

Rogl, 2015, Acta Mater., 95, 201, 10.1016/j.actamat.2015.05.024

Xie, 2009, Appl. Phys. Lett., 94, 102111, 10.1063/1.3097026

Yu, 2010, J. Electron. Mater., 39, 2008, 10.1007/s11664-009-1032-8

Zheng, 2015, Adv. Energy Mater., 5, 1401391, 10.1002/aenm.201401391

Dresselhaus, 2007, Adv. Mater., 19, 1043, 10.1002/adma.200600527

Minnich, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 155327, 10.1103/PhysRevB.80.155327

Lan, 2010, Adv. Funct. Mater., 20, 357, 10.1002/adfm.200901512

Qiu, 2015, Europhys. Lett., 109, 57006, 10.1209/0295-5075/109/57006

Joshi, 2008, Nano Lett., 8, 4670, 10.1021/nl8026795

Joshi, 2011, Adv. Energy Mater., 1, 643, 10.1002/aenm.201100126

Yan, 2011, Nano Lett., 11, 556, 10.1021/nl104138t

Dahal, 2014, Acta Mater., 75, 316, 10.1016/j.actamat.2014.05.019

Kanno, 2018, Appl. Phys. Lett., 112, 033903, 10.1063/1.5016488

Mao, 2017, Proc Natl Acad Sci U S A., 114, 10548, 10.1073/pnas.1711725114

de Boor, 2014, Acta Mater., 77, 68, 10.1016/j.actamat.2014.05.041

Qiu, 2019, Adv. Energy Mater., 9, 1803447, 10.1002/aenm.201803447

Wei, 2015, Phys. Chem. Chem. Phys., 17, 30102, 10.1039/C5CP05510E

Wu, 2020, J. Mater. Chem. A, 8, 8455, 10.1039/D0TA02660C

Li, 2012, Energy Environ. Sci., 5, 8543, 10.1039/c2ee22622g

Fu, 2013, J. Appl. Phys., 114, 134905, 10.1063/1.4823859

Kishimoto, 2002, J. Appl. Phys., 92, 5331, 10.1063/1.1512964

Martin, 2009, Phys. Rev. B, 79, 115311, 10.1103/PhysRevB.79.115311

Wei, 2016, J. Am. Chem. Soc., 138, 8875, 10.1021/jacs.6b04181

He, 2016, Proc. Natl. Acad. Sci. U. S. A., 113, 13576, 10.1073/pnas.1617663113

Shen, 2019, Mater. Today Phys., 8, 62, 10.1016/j.mtphys.2019.01.004

Ren, 2020, Nat. Commun., 11, 3142, 10.1038/s41467-020-16913-2

Serrano-Sánchez, 2020, J. Mater. Chem. A, 8, 14822, 10.1039/D0TA04644B

Luo, 2021, Acta Mater., 217, 117147, 10.1016/j.actamat.2021.117147

Wu, 2020, Adv. Electron. Mater., 6, 2000038, 10.1002/aelm.202000038

Tamaki, 2016, Adv. Mater., 28, 10182, 10.1002/adma.201603955

Shuai, 2017, Energy Environ. Sci., 10, 799, 10.1039/C7EE00098G

Kuo, 2018, Energy Environ. Sci., 11, 429, 10.1039/C7EE03326E

Imasato, 2020, Adv. Mater., 32, 1908218, 10.1002/adma.201908218

Pan, 2020, Energy Environ. Sci., 13, 1717, 10.1039/D0EE00838A

Li, 2020, Research, 2020, 1934848

Shi, 2019, Adv. Mater., 31, 1903387, 10.1002/adma.201903387

Wood, 2019, Adv. Mater., 31, 1902337, 10.1002/adma.201902337

Zhang, 2022, Mater. Today Phys., 22, 100573, 10.1016/j.mtphys.2021.100573

Chen, 2013, Adv. Energy Mater., 3, 1210, 10.1002/aenm.201300336

Yan, 2013, Adv. Energy Mater., 3, 1195, 10.1002/aenm.201200973

Joshi, 2014, Energy Environ. Sci., 7, 4070, 10.1039/C4EE02180K

Cantwell, 2014, Acta Mater., 62, 1, 10.1016/j.actamat.2013.07.037

Biswas, 2011, Energy Environ. Sci., 4, 4675, 10.1039/c1ee02297k

Tan, 2017, Adv. Energy Mater., 7, 1700099, 10.1002/aenm.201700099

Shuai, 2018, J. Am. Chem. Soc., 140, 1910, 10.1021/jacs.7b12767

Ikeda, 2012, Small, 8, 2350, 10.1002/smll.201200386

Tan, 2016, Nat. Commun., 7, 12167, 10.1038/ncomms12167

Su, 2017, Adv. Mater., 29, 1602013, 10.1002/adma.201602013

Shen, 2010, Energy Environ. Sci., 3, 1519, 10.1039/c0ee00012d

Nunna, 2017, Energy Environ. Sci., 10, 1928, 10.1039/C7EE01737E

Deng, 2018, Energy Environ. Sci., 11, 1520, 10.1039/C8EE00290H

Yang, 2020, Adv. Mater., 32, 2003730, 10.1002/adma.202003730

Chen, 2012, Prog. Nat. Sci.: Mater. Int., 22, 535, 10.1016/j.pnsc.2012.11.011

Liu, 2012, Nano Energy, 1, 42, 10.1016/j.nanoen.2011.10.001

Mao, 2018, Adv. Phys., 67, 69, 10.1080/00018732.2018.1551715

Y. I.Ravich , B. A.Efimova , I. A.Smirnov and L. S.Stil’bans , Semiconducting Lead Chalcogenides , Springer , US , 1970

Kang, 2017, Nat. Mater., 16, 252, 10.1038/nmat4784

Seto, 1975, J. Appl. Phys., 46, 5247, 10.1063/1.321593

Kamins, 1971, J. Appl. Phys., 42, 4357, 10.1063/1.1659780

Vigil-Galán, 2001, J. Appl. Phys., 90, 3427, 10.1063/1.1400090

Slade, 2020, Energy Environ. Sci., 13, 1509, 10.1039/D0EE00491J

Pike, 1979, J. Appl. Phys., 50, 3414, 10.1063/1.326334

Mataré, 1984, J. Appl. Phys., 56, 2605, 10.1063/1.333793

Bardeen, 1950, Phys. Rev., 80, 72, 10.1103/PhysRev.80.72

Kuo, 2019, Adv. Mater. Interfaces, 6, 1900429, 10.1002/admi.201900429

Nayeb-Hashemi, 1984, Bull. Alloy Phase Diagrams, 5, 579, 10.1007/BF02868320

Xia, 2021, Appl. Phys. Lett., 118, 140503, 10.1063/5.0043552

Fu, 2016, Adv. Sci., 3, 1600035, 10.1002/advs.201600035

Fu, 2015, Nat. Commun., 6, 8144, 10.1038/ncomms9144

Zeier, 2016, Nat. Rev. Mater., 1, 16032, 10.1038/natrevmats.2016.32

Shi, 2011, J. Am. Chem. Soc., 133, 7837, 10.1021/ja111199y

Rosenzweig, 1984, Phys. Status Solidi A, 83, 357, 10.1002/pssa.2210830141

Yoneda, 2001, Mater. Trans., 42, 329, 10.2320/matertrans.42.329

N. W.Ashcroft and N. D.Mermin , Solid State Physics , Thomson Learning, Inc. , 1976

Rowlinson, 1989, Physica A, 156, 15, 10.1016/0378-4371(89)90108-8

V. I.Fistul , Heavily Doped Semiconductors , Springer , US , 1969

Liu, 2013, Adv. Energy Mater., 3, 1238, 10.1002/aenm.201300174

Fu, 2014, Adv. Energy Mater., 4, 1400600, 10.1002/aenm.201400600

Zhu, 2018, Nat. Commun., 9, 2497, 10.1038/s41467-018-04958-3

Hao, 2017, Materials, 10

D.Halliday , R.Resnick and J.Walker , Fundamentals of Physics Extended , John Wiley & Sons, Incorporated , 10th edn, 2013

Mott, 1961, Philos. Mag., 6, 287, 10.1080/14786436108243318

Edwards, 1982, Acc. Chem. Res., 15, 87, 10.1021/ar00075a004

Reiss, 1986, Phys. Rev. Lett., 56, 2100, 10.1103/PhysRevLett.56.2100

Paesler, 1978, Phys. Rev. B, 17, 2059, 10.1103/PhysRevB.17.2059

Hu, 2015, Adv. Energy Mater., 5, 1500411, 10.1002/aenm.201500411

Wu, 2019, Adv. Sci., 6, 1901702, 10.1002/advs.201901702

Liu, 2015, J. Mater. Chem. A, 3, 22716, 10.1039/C5TA04418A

Lin, 2016, Nat. Commun., 7, 10287, 10.1038/ncomms10287

Pei, 2011, Energy Environ. Sci., 4, 2085, 10.1039/c0ee00456a

Korkosz, 2014, J. Am. Chem. Soc., 136, 3225, 10.1021/ja4121583

Yu, 2018, Adv. Energy Mater., 8, 1701313, 10.1002/aenm.201701313

Yu, 2020, Adv. Energy Mater., 10, 2000888, 10.1002/aenm.202000888

Zebarjadi, 2015, Appl. Phys. Lett., 106, 203506, 10.1063/1.4921457

Luo, 2021, Adv. Funct. Mater., 31, 2100258, 10.1002/adfm.202100258

An, 2021, Energy Environ. Sci., 14, 5469, 10.1039/D1EE01977E

Takashiri, 2008, J. Appl. Phys., 104, 084302, 10.1063/1.2990774

Kajikawa, 2013, J. Appl. Phys., 114, 053707, 10.1063/1.4817243