Carleson measures and Berezin-type operators on Fock spaces
Tóm tắt
We characterize (vanishing) Fock–Carleson measures by products of functions in Fock spaces. We also study the boundedness of Berezin-type operators from a weighted Fock space to a Lebesgue space. Due to the special properties of Fock–Carleson measures, the boundedness of Berezin-type operators on Fock spaces is different from the corresponding results on Bergman spaces.
Từ khóa
Tài liệu tham khảo
Abate, M., Raissy, J.: Skew Carleson measure in strongly pseudoconvex domains. Complex Anal. Oper. Theory 13, 405–429 (2019)
Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc. 83, 587–605 (2011)
Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263, 3449–3491 (2012)
Abate, M., Mongodi, S., Raissy, J.: Toeplitz operators and skew Carleson measures for weighted Bergman spaces on strongly pseudoconvex domains. J. Oper. Theory 84, 339–364 (2020)
Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80, 921–930 (1958)
Carleson, L.: Interpolation by bounded analytic functions and the corona problem. Ann. Math. 76, 547–559 (1962)
Choe, B.R., Lee, Y.J., Kyunguk, N.: Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J. 56, 255–270 (2004)
Dostanić, M., Zhu, K.H.: Integral operators induced by the Fock kernel. Integr. Equ. Oper. Theory 60, 217–236 (2008)
Duren, P.L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75, 143–146 (1969)
Hastings, W.W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52, 237–241 (1975)
Hörmander, L.: \(L^{p}\) estimates for (pluri-)subharmonic functions. Math. Scand. 20, 65–78 (1967)
Hu, Z.J., Lv, X.F.: Toeplitz operators from one Fock space to another. Integr. Equ. Oper. Theory 70, 541–559 (2011)
Hu, Z.J., Lv, X.F.: Toeplitz operators on Fock spaces \(F^p(\varphi )\). Integr. Equ. Oper. Theory 80, 33–59 (2014)
Hu, Z.J., Lv, X.F.: Positive Toeplitz operators between different doubling Fock spaces. Taiwan. J. Math. 21, 467–487 (2017)
Hu, Z.J., Lv, X.F., Zhu, K.H.: Carleson measures and balayage for Bergman spaces of strongly pseudoconvex domains. Math. Nachr. 289, 1237–1254 (2016)
Kaptanoğlu, H.T.: Carleson measures for Besov spaces on the ball with applications. J. Funct. Anal. 250, 483–520 (2007)
Liu, C.W., Si, J.J.: Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. Commun. Math. Stat. 8, 113–134 (2020)
Lu, J., Zhao, R. H., Zhou, L. F.: On a class of generalized Berezin type operators on the unit ball of \(\mathbb{C}^{n}\). preprint (2024)
Luecking, D.H.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87, 656–660 (1983)
Luecking, D.H.: Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivative. Am. J. Math. 107, 85–111 (1985)
Luecking, D.H.: Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinb. Math. Soc. 29, 125–131 (1986)
Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63, 595–619 (1991)
Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40, 333–358 (1993)
Pau, J.: Integration operators between Hardy spaces on the unit ball of \(\mathbb{C} ^n\). J. Funct. Anal. 270, 134–176 (2016)
Pau, J., Zhao, R.H.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Mich. Math. J. 64, 759–796 (2015)
Peng, R., Ouyang, C.H.: Carleson measures for Besov–Sobolev spaces with applications in the unit ball of \(\mathbb{C} ^n\). Acta Math. Sci. Ser. B 33, 1219–1230 (2013)
Power, S.C.: Hörmander’s Carleson theorem for the ball. Glasg. Math. J. 26, 13–17 (1985)
Prǎjiturǎ, G.T., Zhao, R.H., Zhou, L.F.: On Berezin type operators and Toeplitz operators on Bergman spaces. Banach J. Math. Anal. 17, 30 (2023)
Shamoyan, R.: On some characterizations of Carleson type measure in the unit ball. Banach J. Math. Anal. 3, 42–48 (2009)
Si, J.J., Zhang, Y., Zhou, L.F.: Carleson measures and Toeplitz operators between Bergman spaces on the Siegel upper half-space. Complex Anal. Oper. Theory 16, 23 (2022)
Videnskiǐ, I.V.: An analogue of Carleson measures (Russian). Dokl. Akad. Nauk SSSR 298, 1042–1047 (1988); translation in Soviet Math. Dokl. 37, 186–190 (1988)
Wang, M.F., Zhou, L.: Carleson measures and Toeplitz type operators on Hardy type tent spaces. Complex Anal. Oper. Theory 15, 46 (2021)
Wang, X.F., Tu, Z.H., Hu, Z.J.: Bounded and compact Toeplitz operators with positive measure symbol on Fock-type spaces. J. Geom. Anal. 30, 4324–4355 (2020)
Zhao, R.H.: New criteria of Carleson measures for Hardy spaces and their applications. Complex Var. Elliptic Equ. 55, 633–646 (2010)