Carleson measures and Berezin-type operators on Fock spaces

Lifang Zhou1,2, Dong Zhao3, Xiaomin Tang1
1Department of Mathematics, Huzhou University, Huzhou, People’s Republic of China
2College of Mathematics and Statistics, Hefei Normal University, Hefei, People’s Republic of China
3School of Mathematical Sciences, Zhejiang Normal University, Jinhua, People’s Republic of China

Tóm tắt

We characterize (vanishing) Fock–Carleson measures by products of functions in Fock spaces. We also study the boundedness of Berezin-type operators from a weighted Fock space to a Lebesgue space. Due to the special properties of Fock–Carleson measures, the boundedness of Berezin-type operators on Fock spaces is different from the corresponding results on Bergman spaces.

Từ khóa


Tài liệu tham khảo

Abate, M., Raissy, J.: Skew Carleson measure in strongly pseudoconvex domains. Complex Anal. Oper. Theory 13, 405–429 (2019) Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains. J. Lond. Math. Soc. 83, 587–605 (2011) Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains. J. Funct. Anal. 263, 3449–3491 (2012) Abate, M., Mongodi, S., Raissy, J.: Toeplitz operators and skew Carleson measures for weighted Bergman spaces on strongly pseudoconvex domains. J. Oper. Theory 84, 339–364 (2020) Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80, 921–930 (1958) Carleson, L.: Interpolation by bounded analytic functions and the corona problem. Ann. Math. 76, 547–559 (1962) Choe, B.R., Lee, Y.J., Kyunguk, N.: Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J. 56, 255–270 (2004) Dostanić, M., Zhu, K.H.: Integral operators induced by the Fock kernel. Integr. Equ. Oper. Theory 60, 217–236 (2008) Duren, P.L.: Extension of a theorem of Carleson. Bull. Am. Math. Soc. 75, 143–146 (1969) Hastings, W.W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52, 237–241 (1975) Hörmander, L.: \(L^{p}\) estimates for (pluri-)subharmonic functions. Math. Scand. 20, 65–78 (1967) Hu, Z.J., Lv, X.F.: Toeplitz operators from one Fock space to another. Integr. Equ. Oper. Theory 70, 541–559 (2011) Hu, Z.J., Lv, X.F.: Toeplitz operators on Fock spaces \(F^p(\varphi )\). Integr. Equ. Oper. Theory 80, 33–59 (2014) Hu, Z.J., Lv, X.F.: Positive Toeplitz operators between different doubling Fock spaces. Taiwan. J. Math. 21, 467–487 (2017) Hu, Z.J., Lv, X.F., Zhu, K.H.: Carleson measures and balayage for Bergman spaces of strongly pseudoconvex domains. Math. Nachr. 289, 1237–1254 (2016) Kaptanoğlu, H.T.: Carleson measures for Besov spaces on the ball with applications. J. Funct. Anal. 250, 483–520 (2007) Liu, C.W., Si, J.J.: Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. Commun. Math. Stat. 8, 113–134 (2020) Lu, J., Zhao, R. H., Zhou, L. F.: On a class of generalized Berezin type operators on the unit ball of \(\mathbb{C}^{n}\). preprint (2024) Luecking, D.H.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87, 656–660 (1983) Luecking, D.H.: Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivative. Am. J. Math. 107, 85–111 (1985) Luecking, D.H.: Multipliers of Bergman spaces into Lebesgue spaces. Proc. Edinb. Math. Soc. 29, 125–131 (1986) Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63, 595–619 (1991) Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40, 333–358 (1993) Pau, J.: Integration operators between Hardy spaces on the unit ball of \(\mathbb{C} ^n\). J. Funct. Anal. 270, 134–176 (2016) Pau, J., Zhao, R.H.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Mich. Math. J. 64, 759–796 (2015) Peng, R., Ouyang, C.H.: Carleson measures for Besov–Sobolev spaces with applications in the unit ball of \(\mathbb{C} ^n\). Acta Math. Sci. Ser. B 33, 1219–1230 (2013) Power, S.C.: Hörmander’s Carleson theorem for the ball. Glasg. Math. J. 26, 13–17 (1985) Prǎjiturǎ, G.T., Zhao, R.H., Zhou, L.F.: On Berezin type operators and Toeplitz operators on Bergman spaces. Banach J. Math. Anal. 17, 30 (2023) Shamoyan, R.: On some characterizations of Carleson type measure in the unit ball. Banach J. Math. Anal. 3, 42–48 (2009) Si, J.J., Zhang, Y., Zhou, L.F.: Carleson measures and Toeplitz operators between Bergman spaces on the Siegel upper half-space. Complex Anal. Oper. Theory 16, 23 (2022) Videnskiǐ, I.V.: An analogue of Carleson measures (Russian). Dokl. Akad. Nauk SSSR 298, 1042–1047 (1988); translation in Soviet Math. Dokl. 37, 186–190 (1988) Wang, M.F., Zhou, L.: Carleson measures and Toeplitz type operators on Hardy type tent spaces. Complex Anal. Oper. Theory 15, 46 (2021) Wang, X.F., Tu, Z.H., Hu, Z.J.: Bounded and compact Toeplitz operators with positive measure symbol on Fock-type spaces. J. Geom. Anal. 30, 4324–4355 (2020) Zhao, R.H.: New criteria of Carleson measures for Hardy spaces and their applications. Complex Var. Elliptic Equ. 55, 633–646 (2010)