Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bohnert KR, Mcmillan JD, Kumar A (2018) Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 233:67–78. https://doi.org/10.1002/jcp.25852
Brocca L, Toniolo L, Reggiani C et al (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595:1143–1158. https://doi.org/10.1113/JP273097
Bröer S, Bröer A (2017) Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 474:1935–1963. https://doi.org/10.1042/BCJ20160822
Cho H, Choi SH, Hwang K et al (2005) Molecules and the Src/PLC/PKC/MEK/ERK signaling pathway is involved in aortic smooth muscle cell proliferation induced by glycated LDL. Mol Cells 19:60–66
Cho Y, Yao K, Bode AM et al (2007) RSK2 mediates muscle cell differentiation through regulation of NFAT3. J Biol Chem 282:8380–8392. https://doi.org/10.1074/jbc.M611322200
Conus NM, Hemmings BA, Pearson RB (1998) Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70 S6k *. J Biol Chem 273:4776–4782
Couteaux R, Mira J-C, D’Albis A (1988) Regeneration of muscles after cardiotoxin injury I. Cytological aspects. Biol Cell 62:171–182
Czerwinska AM, Streminska W, Ciemerych MA, Grabowska I (2012) Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochem Cytobiol 50:144–153. https://doi.org/10.5603/FHC.2012.0021
D’Albis A, Couteaux R, Janmot C et al (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Eur J Biochem 174:103–110
Erbay E, Park I, Nuzzi PD et al (2003) IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol 163:931–936. https://doi.org/10.1083/jcb.200307158
Fan Q, Cheng C, Knight ZA et al (2009) EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2:ra4
Filippa N, Sable CL, Filloux C et al (1999) Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 19:4989–5000
Fink E, Fortin D, Serrurier B et al (2003) Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury. J Muscle Res Cell Motil 24:421–429. https://doi.org/10.1023/A:1027387501614
Ge Y, Wu A, Warnes C et al (2009) mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol 297:1434–1444. https://doi.org/10.1152/ajpcell.00248.2009
Goetsch SC, Hawke TJ, Gallardo TD et al (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271
Goldspink BDF (1976) The effects of denervation on protein turnover of rat skeletal muscle. Biochem J 156:71–80
Goldspink DF (1978) Changes in the size and protein turnover of the Soleus muscle in response to immobilization or denervation. Biochem Soc Trans 6:1014–1017
Goldspink DF, Garlickt PJ, Mcnurlanti MA (1983) Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J 210:89–98
Graves LM, He Y, Lambert J et al (1997) An intracellular calcium signal activates p70 but not p90 ribosomal S6 kinase in liver epithelial cells. J Biol Chem 272:1920–1928
Gulati P, Gaspers LD, Dann SG et al (2008) Article amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 4:456–465. https://doi.org/10.1016/j.cmet.2008.03.002
Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42:933–945. https://doi.org/10.1016/j.toxicon.2003.11.011
Harvey A, Marshall R, Karlsson E (1982) Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon 20:379–396
Iijima Y, Laser M, Shiraishi H et al (2002) c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J Biol Chem 277:23065–23075. https://doi.org/10.1074/jbc.M200328200
Järvinen TAH, Järvinen TLN, Kääriäinen M et al (2005) Muscle injuries: biology and treatment. Am J Sport Med 33:745–764. https://doi.org/10.1177/0363546505274714
Jerkovic R, Argentini C, Serrano-Sanchez A et al (1997) Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct Funct 22:147–153
Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115. 10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0
Keren A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252:224–230. https://doi.org/10.1016/j.mce.2006.03.017
Kojima A, Goto K, Morioka S et al (2007) Heat stress facilitates the regeneration of injured skeletal muscle. J Orthop Sci 12:74–82. https://doi.org/10.1007/s00776-006-1083-0
Krzyzowska M, Swiatek W, Fijalkowska B et al (2010) The role of map kinases in immune response. Adv Cell Biol 2:125–138. https://doi.org/10.2478/v10052-010-0007-5
Langer HT, Senden JMG, Gijsen AP et al (2018) Muscle atrophy due to nerve damage is accompanied by elevated myofibrillar protein synthesis rates. Front Physiol 9:1220. https://doi.org/10.3389/fphys.2018.01220
Launay T, Noirez P, Butler-Browne G et al (2006) Mechanisms of Tissue Repair Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 290:1508–1514. https://doi.org/10.1152/ajpregu.00486.2005
Lefaucheur JP, Bille ASI (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 5:501–509
Li J, Johnson SE (2006) ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun 345:1425–1433. https://doi.org/10.1016/j.bbrc.2006.05.051
Mahdy MAA, Lei HY, Wakamatsu J-I et al (2015) Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 202:18–27. https://doi.org/10.1016/j.aanat.2015.07.002
Mahdy M (2018) Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 374:233–241. https://doi.org/10.1007/s00441-018-2846-6
McArdle A, Dillmann WH, Mestril R et al (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357
Miyabara EH, Martin JL, Griffin TM et al (2006) Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. Am J Physiol Cell Physiol 290:1128–1138. https://doi.org/10.1152/ajpcell.00399.2005
Miyazaki M (2013) PKC-dependent regulation of mTOR activity is mediated through TSC2/Rheb signaling in C2C12 myoblasts. In: Proceedings of the Physiological Society, p PCA270
Miyazaki M, Takemasa T (2017) TSC2/Rheb signaling mediates ERK-dependent regulation of mTORC1 activity in C2C12 myoblasts. FEBS Open Bio 7:424–433. https://doi.org/10.1002/2211-5463.12195
Moschella PC, Rao VU, Mcdermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCε and PKCδ, in adult cardiac muscle cells. J Mol Cell Cardiol 43:754–766. https://doi.org/10.1016/j.yjmcc.2007.09.015
Ochala J, Gustafson A, Diez ML et al (2011) Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J Physiol 589:2007–2026. https://doi.org/10.1113/jphysiol.2010.202044
El-Osta M, Liu M, Adada M et al (2014) Sustained PKCbII activity confers oncogenic properties in a phospholipase D- and mTOR-dependent manner. FASEB J 18:495–505. https://doi.org/10.1096/fj.13-230557
Ownby CL, Fletcher JE, Colberg TR (1993) Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31:697–709. https://doi.org/10.1016/0041-0101(93)90376-T
Pessina P, Cabrera D, Morales MG et al (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle 4:1–17. https://doi.org/10.1186/2044-5040-4-7
Ramadasan-Nair R, Gayathri N, Mishra S et al (2014) Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration. J Biol Chem 289:485–509. https://doi.org/10.1074/jbc.M113.493270
Richard-Bulteau H, Serrurier B, Crassous B et al (2008) Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol 294:467–476. https://doi.org/10.1152/ajpcell.00355.2007
Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344. https://doi.org/10.1128/MMBR.68.2.320
Sanchez AMJ, Candau RB (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71:1657–1671. https://doi.org/10.1007/s00018-013-1513-z
Schiaffino S, Gorza L, Pitton G et al (1988) Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol 127:1–11. https://doi.org/10.1016/0012-1606(88)90183-2
Segalés J, Perdiguero E, Muñoz-Cánoves P (2016) Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway. Front Cell Dev Biol 4:91. https://doi.org/10.3389/fcell.2016.00091
Selsby JT, Rother S, Tsuda S et al (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 102:1702–1707. https://doi.org/10.1152/japplphysiol.00722.2006
Senf SM (2013) Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 4:330. https://doi.org/10.3389/fphys.2013.00330
Senf SM, Howard TM, Ahn B et al (2013) Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS ONE 8:e62687. https://doi.org/10.1371/journal.pone.0062687
Shi H, Zeng C, Ricome A et al (2007) Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 292:1681–1689. https://doi.org/10.1152/ajpcell.00466.2006
Shi H, Scheffler JM, Pleitner JM et al (2008) Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. FASEB J 22:2990–3000. https://doi.org/10.1096/fj.07-097600
Sunitha B, Gayathri N, Kumar M et al (2016) Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 138:174–191. https://doi.org/10.1111/jnc.13626
Tsao H, Chiu P, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2 × 7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4:e751. https://doi.org/10.1038/cddis.2013.274
Waser M, Mesaeli N, Spencer C, Michalak M (1997) Regulation of calreticulin expression by calcium. J Cell Biol 138:547–557
Yan L, Christians ES, Liu L et al (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172
Yan Z, Choi S, Liu X et al (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836. https://doi.org/10.1074/jbc.M209879200
Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13:25–32. https://doi.org/10.1016/j.jot.2018.01.002