Cardiotoxin-induced skeletal muscle injury elicits profound changes in anabolic and stress signaling, and muscle fiber type composition

Sebastiaan Dalle1, Charlotte Hiroux1, Chiel Poffé1, Monique Ramaekers1, Louise Deldicque2, Katrien Koppo1
1Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Louvain, Belgium
2Institute of Neuroscience, Université catholique de Louvain, Place Pierre de Coubertin 1, 1348 Louvain-la-Neuve, Belgium.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bohnert KR, Mcmillan JD, Kumar A (2018) Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease. J Cell Physiol 233:67–78. https://doi.org/10.1002/jcp.25852

Brocca L, Toniolo L, Reggiani C et al (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595:1143–1158. https://doi.org/10.1113/JP273097

Bröer S, Bröer A (2017) Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 474:1935–1963. https://doi.org/10.1042/BCJ20160822

Cho H, Choi SH, Hwang K et al (2005) Molecules and the Src/PLC/PKC/MEK/ERK signaling pathway is involved in aortic smooth muscle cell proliferation induced by glycated LDL. Mol Cells 19:60–66

Cho Y, Yao K, Bode AM et al (2007) RSK2 mediates muscle cell differentiation through regulation of NFAT3. J Biol Chem 282:8380–8392. https://doi.org/10.1074/jbc.M611322200

Conus NM, Hemmings BA, Pearson RB (1998) Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70 S6k *. J Biol Chem 273:4776–4782

Couteaux R, Mira J-C, D’Albis A (1988) Regeneration of muscles after cardiotoxin injury I. Cytological aspects. Biol Cell 62:171–182

Czerwinska AM, Streminska W, Ciemerych MA, Grabowska I (2012) Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochem Cytobiol 50:144–153. https://doi.org/10.5603/FHC.2012.0021

D’Albis A, Couteaux R, Janmot C et al (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Eur J Biochem 174:103–110

Erbay E, Park I, Nuzzi PD et al (2003) IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. J Cell Biol 163:931–936. https://doi.org/10.1083/jcb.200307158

Fan Q, Cheng C, Knight ZA et al (2009) EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2:ra4

Filippa N, Sable CL, Filloux C et al (1999) Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 19:4989–5000

Fink E, Fortin D, Serrurier B et al (2003) Recovery of contractile and metabolic phenotypes in regenerating slow muscle after notexin-induced or crush injury. J Muscle Res Cell Motil 24:421–429. https://doi.org/10.1023/A:1027387501614

Ge Y, Wu A, Warnes C et al (2009) mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. Am J Physiol Cell Physiol 297:1434–1444. https://doi.org/10.1152/ajpcell.00248.2009

Gething M (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472

Goetsch SC, Hawke TJ, Gallardo TD et al (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271

Goldspink BDF (1976) The effects of denervation on protein turnover of rat skeletal muscle. Biochem J 156:71–80

Goldspink DF (1978) Changes in the size and protein turnover of the Soleus muscle in response to immobilization or denervation. Biochem Soc Trans 6:1014–1017

Goldspink DF, Garlickt PJ, Mcnurlanti MA (1983) Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem J 210:89–98

Graves LM, He Y, Lambert J et al (1997) An intracellular calcium signal activates p70 but not p90 ribosomal S6 kinase in liver epithelial cells. J Biol Chem 272:1920–1928

Gulati P, Gaspers LD, Dann SG et al (2008) Article amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 4:456–465. https://doi.org/10.1016/j.cmet.2008.03.002

Harris JB (2003) Myotoxic phospholipases A2 and the regeneration of skeletal muscles. Toxicon 42:933–945. https://doi.org/10.1016/j.toxicon.2003.11.011

Harvey A, Marshall R, Karlsson E (1982) Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon 20:379–396

Iijima Y, Laser M, Shiraishi H et al (2002) c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J Biol Chem 277:23065–23075. https://doi.org/10.1074/jbc.M200328200

Järvinen TAH, Järvinen TLN, Kääriäinen M et al (2005) Muscle injuries: biology and treatment. Am J Sport Med 33:745–764. https://doi.org/10.1177/0363546505274714

Jerkovic R, Argentini C, Serrano-Sanchez A et al (1997) Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct Funct 22:147–153

Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115. 10.1002/1097-4652(200101)186:1<104::AID-JCP1015>3.0.CO;2-0

Keren A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252:224–230. https://doi.org/10.1016/j.mce.2006.03.017

Kojima A, Goto K, Morioka S et al (2007) Heat stress facilitates the regeneration of injured skeletal muscle. J Orthop Sci 12:74–82. https://doi.org/10.1007/s00776-006-1083-0

Krzyzowska M, Swiatek W, Fijalkowska B et al (2010) The role of map kinases in immune response. Adv Cell Biol 2:125–138. https://doi.org/10.2478/v10052-010-0007-5

Langer HT, Senden JMG, Gijsen AP et al (2018) Muscle atrophy due to nerve damage is accompanied by elevated myofibrillar protein synthesis rates. Front Physiol 9:1220. https://doi.org/10.3389/fphys.2018.01220

Launay T, Noirez P, Butler-Browne G et al (2006) Mechanisms of Tissue Repair Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am J Physiol Regul Integr Comp Physiol 290:1508–1514. https://doi.org/10.1152/ajpregu.00486.2005

Lefaucheur JP, Bille ASI (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 5:501–509

Li J, Johnson SE (2006) ERK2 is required for efficient terminal differentiation of skeletal myoblasts. Biochem Biophys Res Commun 345:1425–1433. https://doi.org/10.1016/j.bbrc.2006.05.051

Mahdy MAA, Lei HY, Wakamatsu J-I et al (2015) Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 202:18–27. https://doi.org/10.1016/j.aanat.2015.07.002

Mahdy M (2018) Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 374:233–241. https://doi.org/10.1007/s00441-018-2846-6

McArdle A, Dillmann WH, Mestril R et al (2004) Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 18:355–357

Miyabara EH, Martin JL, Griffin TM et al (2006) Overexpression of inducible 70-kDa heat shock protein in mouse attenuates skeletal muscle damage induced by cryolesioning. Am J Physiol Cell Physiol 290:1128–1138. https://doi.org/10.1152/ajpcell.00399.2005

Miyazaki M (2013) PKC-dependent regulation of mTOR activity is mediated through TSC2/Rheb signaling in C2C12 myoblasts. In: Proceedings of the Physiological Society, p PCA270

Miyazaki M, Takemasa T (2017) TSC2/Rheb signaling mediates ERK-dependent regulation of mTORC1 activity in C2C12 myoblasts. FEBS Open Bio 7:424–433. https://doi.org/10.1002/2211-5463.12195

Moschella PC, Rao VU, Mcdermott PJ, Kuppuswamy D (2007) Regulation of mTOR and S6K1 activation by the nPKC isoforms, PKCε and PKCδ, in adult cardiac muscle cells. J Mol Cell Cardiol 43:754–766. https://doi.org/10.1016/j.yjmcc.2007.09.015

Ochala J, Gustafson A, Diez ML et al (2011) Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. J Physiol 589:2007–2026. https://doi.org/10.1113/jphysiol.2010.202044

El-Osta M, Liu M, Adada M et al (2014) Sustained PKCbII activity confers oncogenic properties in a phospholipase D- and mTOR-dependent manner. FASEB J 18:495–505. https://doi.org/10.1096/fj.13-230557

Ownby CL, Fletcher JE, Colberg TR (1993) Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon 31:697–709. https://doi.org/10.1016/0041-0101(93)90376-T

Pessina P, Cabrera D, Morales MG et al (2014) Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle 4:1–17. https://doi.org/10.1186/2044-5040-4-7

Ramadasan-Nair R, Gayathri N, Mishra S et al (2014) Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration. J Biol Chem 289:485–509. https://doi.org/10.1074/jbc.M113.493270

Richard-Bulteau H, Serrurier B, Crassous B et al (2008) Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Am J Physiol Cell Physiol 294:467–476. https://doi.org/10.1152/ajpcell.00355.2007

Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344. https://doi.org/10.1128/MMBR.68.2.320

Sanchez AMJ, Candau RB (2014) FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71:1657–1671. https://doi.org/10.1007/s00018-013-1513-z

Schiaffino S, Gorza L, Pitton G et al (1988) Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol 127:1–11. https://doi.org/10.1016/0012-1606(88)90183-2

Segalés J, Perdiguero E, Muñoz-Cánoves P (2016) Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway. Front Cell Dev Biol 4:91. https://doi.org/10.3389/fcell.2016.00091

Selsby JT, Rother S, Tsuda S et al (2007) Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 102:1702–1707. https://doi.org/10.1152/japplphysiol.00722.2006

Senf SM (2013) Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 4:330. https://doi.org/10.3389/fphys.2013.00330

Senf SM, Howard TM, Ahn B et al (2013) Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS ONE 8:e62687. https://doi.org/10.1371/journal.pone.0062687

Shi H, Zeng C, Ricome A et al (2007) Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 292:1681–1689. https://doi.org/10.1152/ajpcell.00466.2006

Shi H, Scheffler JM, Pleitner JM et al (2008) Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling. FASEB J 22:2990–3000. https://doi.org/10.1096/fj.07-097600

Sunitha B, Gayathri N, Kumar M et al (2016) Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function. J Neurochem 138:174–191. https://doi.org/10.1111/jnc.13626

Tsao H, Chiu P, Sun SH (2013) PKC-dependent ERK phosphorylation is essential for P2 × 7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 4:e751. https://doi.org/10.1038/cddis.2013.274

Waser M, Mesaeli N, Spencer C, Michalak M (1997) Regulation of calreticulin expression by calcium. J Cell Biol 138:547–557

Yan L, Christians ES, Liu L et al (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

Yan Z, Choi S, Liu X et al (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836. https://doi.org/10.1074/jbc.M209879200

Yang W, Hu P (2018) Skeletal muscle regeneration is modulated by inflammation. J Orthop Transl 13:25–32. https://doi.org/10.1016/j.jot.2018.01.002

Yokoyama T, Takano K, Yoshida A et al (2007) DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation. J Cell Physiol 177:781–793. https://doi.org/10.1083/jcb.200703195