Cardioprotective effects of nanoceria in a murine model of cardiac remodeling

Journal of Trace Elements in Medicine and Biology - Tập 50 - Trang 198-208 - 2018
Preeti Kumari1, Mohd Aslam Saifi1, Amit Khurana1, Chandraiah Godugu1
1Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India

Tài liệu tham khảo

Benjamin, 2017, Heart disease and stroke statistics—2017 update: a report from the American Heart Association, Circulation, 135, e146, 10.1161/CIR.0000000000000485 Zhang, 2005, Cardiac oxidative stress in acute and chronic isoproterenol-infused rats, Cardiovasc. Res., 65, 230, 10.1016/j.cardiores.2004.08.013 Teekakirikul, 2010, Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β, J. Clin. Invest., 120, 3520, 10.1172/JCI42028 Zhao, 2008, Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats, Mol. Cell. Biochem., 317, 43, 10.1007/s11010-008-9803-8 Liu, 2010, Oxidative stress and glutathione in TGF-β-mediated fibrogenesis, Free Radical Biol. Med., 48, 1, 10.1016/j.freeradbiomed.2009.09.026 Rathore, 2000, Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat erythrocytes, Indian J. Physiol. Pharmacol., 44, 161 Celardo, 2011, Pharmacological potential of cerium oxide nanoparticles, Nanoscale, 3, 1411, 10.1039/c0nr00875c Colon, 2010, Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2, Nanomed. Nanotechnol. Biol. Med., 6, 698, 10.1016/j.nano.2010.01.010 Khurana, 2017, 1411 Pirmohamed, 2010, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46, 2736, 10.1039/b922024k Korsvik, 2007, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles, Chem. Commun., 1056, 10.1039/b615134e Nassar, 2018, Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: a possible implication of endothelin-1, Life Sci., 201, 89, 10.1016/j.lfs.2018.03.045 Sangomla, 2018, Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation, J. Trace Elem. Med. Biol., 47, 53, 10.1016/j.jtemb.2018.01.016 Reddy, 2016, Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs, SpringerPlus, 5, 1618, 10.1186/s40064-016-3267-1 Ellman, 1959, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70, 10.1016/0003-9861(59)90090-6 Kumar, 2014, Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy, Chem. Biol. Interact., 223, 125, 10.1016/j.cbi.2014.09.017 Bale, 2016, Oropharyngeal aspiration of bleomycin: an alternative experimental model of pulmonary fibrosis developed in Swiss mice, Indian journal of pharmacology, 48, 643, 10.4103/0253-7613.194859 Sangomla, 2018, Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation, J. Trace Elem. Med. Biol., 47, 53, 10.1016/j.jtemb.2018.01.016 Poli, 2000, Pathogenesis of liver fibrosis: role of oxidative stress, Mol. Aspects Med., 21, 49, 10.1016/S0098-2997(00)00004-2 Kliment, 2010, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radical Biol. Med., 49, 707, 10.1016/j.freeradbiomed.2010.04.036 Aragno, 2008, Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats, Endocrinology, 149, 380, 10.1210/en.2007-0877 Meng, 2015, TGF-β/smad signaling in renal fibrosis, Front. Physiol., 6, 82, 10.3389/fphys.2015.00082 Dobaczewski, 2011, Transforming growth factor (TGF)-β signaling in cardiac remodeling, J. Mol. Cell. Cardiol., 51, 600, 10.1016/j.yjmcc.2010.10.033 Khalil, 2017, Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis, J. Clin. Invest., 127, 3770, 10.1172/JCI94753 Leask, 2004, TGF-β signaling and the fibrotic response, FASEB J., 18, 816, 10.1096/fj.03-1273rev Gressner, 2002, Roles of TGF-beta in hepatic fibrosis, Front. Biosci., 7, d793, 10.2741/A812 Bujak, 2007, The role of TGF-β signaling in myocardial infarction and cardiac remodeling, Cardiovasc. Res., 74, 184, 10.1016/j.cardiores.2006.10.002 Hinz, 2007, The myofibroblast: one function, multiple origins, Am. J. Pathol., 170, 1807, 10.2353/ajpath.2007.070112 Benjamin, 1989, Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis, Circ. Res., 65, 657, 10.1161/01.RES.65.3.657 Celardo, 2011, Cerium oxide nanoparticles: a promise for applications in therapy, J. Exp. Ther. Oncol., 9, 47 Ithayarasi, 1996, Effect of alpha-tocopherol on isoproterenol induced myocardial infarction in rats--electrocardiographic biochemical and histological evidences, Indian J. Physiol. Pharmacol., 40, 297 Khalil, 2015, Amelioration of isoproterenol-induced oxidative damage in rat myocardium by Withania somnifera leaf extract, Biomed Res. Int., 2015, 10.1155/2015/624159 Tiwari, 2009, Cardioprotective potential of myricetin in isoproterenol‐induced myocardial infarction in wistar rats, Phytother. Res., 23, 1361, 10.1002/ptr.2688 Ibrahim, 2018, Cerium oxide nanoparticles: in pursuit of liver protection against doxorubicin-induced injury in rats, Biomed. Pharmacother., 103, 773, 10.1016/j.biopha.2018.04.075 Geetha, 1990, Alpha-tocopherol reduces doxorubicin-induced toxicity in rats--histological and biochemical evidences, Indian J. Physiol. Pharmacol., 34, 94 Singal, 1982, Role of free radicals in catecholamine-induced cardiomyopathy, Can. J. Physiol. Pharmacol., 60, 1390, 10.1139/y82-207 Farvin, 2004, Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats, Pharmacol. Res., 50, 231, 10.1016/j.phrs.2004.03.004 Baldim, 2018, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce 3+ surface area concentration, Nanoscale, 10, 6971, 10.1039/C8NR00325D Heckert, 2008, The role of cerium redox state in the SOD mimetic activity of nanoceria, Biomaterials, 29, 2705, 10.1016/j.biomaterials.2008.03.014 Sushamakumari, 1989, Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol, Indian J. Exp. Biol., 27, 134 Gupta, 2013, Cardioprotective effect of ritonavir, an antiviral drug, in isoproterenol induced myocardial necrosis: a new therapeutic implication, J. Transl. Med., 11, 80, 10.1186/1479-5876-11-80 Kannan, 2013, Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats, Metab. Clin. Exp., 62, 52, 10.1016/j.metabol.2012.06.003 Zhang, 2016, Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways, Front. Pharmacol., 7, 392, 10.3389/fphar.2016.00392 Kolli, 2014, Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension, Biomaterials, 35, 9951, 10.1016/j.biomaterials.2014.08.037 Amin, 2011, The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline, Int. J. Nanomed., 6, 143, 10.2147/IJN.S15308 Pagliari, 2012, Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress, ACS nano, 6, 3767, 10.1021/nn2048069 Niu, 2007, Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy, Cardiovasc. Res., 73, 549, 10.1016/j.cardiores.2006.11.031 Wang, 2009, Cardioprotective effect of salvianolic acid a on isoproterenol-induced myocardial infarction in rats, Eur. J. Pharmacol., 615, 125, 10.1016/j.ejphar.2009.04.061 Sharma, 2001, Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats, Mol. Cell. Biochem., 225, 75, 10.1023/A:1012220908636 Stuart, 2016, The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction, J. Mol. Cell. Cardiol., 91, 114, 10.1016/j.yjmcc.2015.12.024 Jalil, 1989, Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle, Circ. Res., 64, 1041, 10.1161/01.RES.64.6.1041 Chen, 2012, Puerarin prevents isoprenaline-induced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression, J. Nutr. Biochem., 23, 1080, 10.1016/j.jnutbio.2011.05.015 Thompson, 1988, Transforming growth factor beta-1 in acute myocardial infarction in rats, Growth Factors, 1, 91, 10.3109/08977198809000251 Yamamoto, 1994, Sustained expression of TGF-β1 underlies development of progressive kidney fibrosis, Kidney Int., 45, 916, 10.1038/ki.1994.122 Oró, 2016, Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis, J. Hepatol., 64, 691, 10.1016/j.jhep.2015.10.020 Herskowitz, 1995, Cytokine mRNA expression in postischemic/reperfused myocardium, Am. J. Pathol., 146, 419 Hirst, 2009, Anti‐inflammatory properties of cerium oxide nanoparticles, Small, 5, 2848, 10.1002/smll.200901048 Bale, 2016, Overview on therapeutic applications of microparticulate drug delivery systems, Crit. Rev.™ Ther. Drug Carrier Syst., 33 Khurana, 2018, 157 Saifi, 2018, 437 Saifi, 2018, Cytotoxicity of nanomaterials: nanotoxicology to address the safety concerns of nanoparticles, Pharm. Nanotechnol., 6, 3, 10.2174/2211738505666171023152928 Nemmar, 2017, Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA damage in various organs of mice, Oxid. Med. Cell. Longevity, 2017, 10.1155/2017/9639035 Ma, 2012, Induction of pulmonary fibrosis by cerium oxide nanoparticles, Toxicol. Appl. Pharmacol., 262, 255, 10.1016/j.taap.2012.05.005 Rubio, 2017, Synergistic role of nanoceria on the ability of tobacco smoke to induce carcinogenic hallmarks in lung epithelial cells, Nanomedicine, 12, 2623, 10.2217/nnm-2017-0205