Cardioprotective effects of nanoceria in a murine model of cardiac remodeling
Tài liệu tham khảo
Benjamin, 2017, Heart disease and stroke statistics—2017 update: a report from the American Heart Association, Circulation, 135, e146, 10.1161/CIR.0000000000000485
Zhang, 2005, Cardiac oxidative stress in acute and chronic isoproterenol-infused rats, Cardiovasc. Res., 65, 230, 10.1016/j.cardiores.2004.08.013
Teekakirikul, 2010, Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β, J. Clin. Invest., 120, 3520, 10.1172/JCI42028
Zhao, 2008, Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats, Mol. Cell. Biochem., 317, 43, 10.1007/s11010-008-9803-8
Liu, 2010, Oxidative stress and glutathione in TGF-β-mediated fibrogenesis, Free Radical Biol. Med., 48, 1, 10.1016/j.freeradbiomed.2009.09.026
Rathore, 2000, Lipid peroxidation and antioxidant enzymes in isoproterenol induced oxidative stress in rat erythrocytes, Indian J. Physiol. Pharmacol., 44, 161
Celardo, 2011, Pharmacological potential of cerium oxide nanoparticles, Nanoscale, 3, 1411, 10.1039/c0nr00875c
Colon, 2010, Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2, Nanomed. Nanotechnol. Biol. Med., 6, 698, 10.1016/j.nano.2010.01.010
Khurana, 2017, 1411
Pirmohamed, 2010, Nanoceria exhibit redox state-dependent catalase mimetic activity, Chem. Commun., 46, 2736, 10.1039/b922024k
Korsvik, 2007, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles, Chem. Commun., 1056, 10.1039/b615134e
Nassar, 2018, Cardioprotective effect of cerium oxide nanoparticles in monocrotaline rat model of pulmonary hypertension: a possible implication of endothelin-1, Life Sci., 201, 89, 10.1016/j.lfs.2018.03.045
Sangomla, 2018, Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation, J. Trace Elem. Med. Biol., 47, 53, 10.1016/j.jtemb.2018.01.016
Reddy, 2016, Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs, SpringerPlus, 5, 1618, 10.1186/s40064-016-3267-1
Ellman, 1959, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70, 10.1016/0003-9861(59)90090-6
Kumar, 2014, Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy, Chem. Biol. Interact., 223, 125, 10.1016/j.cbi.2014.09.017
Bale, 2016, Oropharyngeal aspiration of bleomycin: an alternative experimental model of pulmonary fibrosis developed in Swiss mice, Indian journal of pharmacology, 48, 643, 10.4103/0253-7613.194859
Sangomla, 2018, Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation, J. Trace Elem. Med. Biol., 47, 53, 10.1016/j.jtemb.2018.01.016
Poli, 2000, Pathogenesis of liver fibrosis: role of oxidative stress, Mol. Aspects Med., 21, 49, 10.1016/S0098-2997(00)00004-2
Kliment, 2010, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radical Biol. Med., 49, 707, 10.1016/j.freeradbiomed.2010.04.036
Aragno, 2008, Oxidative stress triggers cardiac fibrosis in the heart of diabetic rats, Endocrinology, 149, 380, 10.1210/en.2007-0877
Meng, 2015, TGF-β/smad signaling in renal fibrosis, Front. Physiol., 6, 82, 10.3389/fphys.2015.00082
Dobaczewski, 2011, Transforming growth factor (TGF)-β signaling in cardiac remodeling, J. Mol. Cell. Cardiol., 51, 600, 10.1016/j.yjmcc.2010.10.033
Khalil, 2017, Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis, J. Clin. Invest., 127, 3770, 10.1172/JCI94753
Leask, 2004, TGF-β signaling and the fibrotic response, FASEB J., 18, 816, 10.1096/fj.03-1273rev
Gressner, 2002, Roles of TGF-beta in hepatic fibrosis, Front. Biosci., 7, d793, 10.2741/A812
Bujak, 2007, The role of TGF-β signaling in myocardial infarction and cardiac remodeling, Cardiovasc. Res., 74, 184, 10.1016/j.cardiores.2006.10.002
Hinz, 2007, The myofibroblast: one function, multiple origins, Am. J. Pathol., 170, 1807, 10.2353/ajpath.2007.070112
Benjamin, 1989, Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis, Circ. Res., 65, 657, 10.1161/01.RES.65.3.657
Celardo, 2011, Cerium oxide nanoparticles: a promise for applications in therapy, J. Exp. Ther. Oncol., 9, 47
Ithayarasi, 1996, Effect of alpha-tocopherol on isoproterenol induced myocardial infarction in rats--electrocardiographic biochemical and histological evidences, Indian J. Physiol. Pharmacol., 40, 297
Khalil, 2015, Amelioration of isoproterenol-induced oxidative damage in rat myocardium by Withania somnifera leaf extract, Biomed Res. Int., 2015, 10.1155/2015/624159
Tiwari, 2009, Cardioprotective potential of myricetin in isoproterenol‐induced myocardial infarction in wistar rats, Phytother. Res., 23, 1361, 10.1002/ptr.2688
Ibrahim, 2018, Cerium oxide nanoparticles: in pursuit of liver protection against doxorubicin-induced injury in rats, Biomed. Pharmacother., 103, 773, 10.1016/j.biopha.2018.04.075
Geetha, 1990, Alpha-tocopherol reduces doxorubicin-induced toxicity in rats--histological and biochemical evidences, Indian J. Physiol. Pharmacol., 34, 94
Singal, 1982, Role of free radicals in catecholamine-induced cardiomyopathy, Can. J. Physiol. Pharmacol., 60, 1390, 10.1139/y82-207
Farvin, 2004, Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats, Pharmacol. Res., 50, 231, 10.1016/j.phrs.2004.03.004
Baldim, 2018, The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce 3+ surface area concentration, Nanoscale, 10, 6971, 10.1039/C8NR00325D
Heckert, 2008, The role of cerium redox state in the SOD mimetic activity of nanoceria, Biomaterials, 29, 2705, 10.1016/j.biomaterials.2008.03.014
Sushamakumari, 1989, Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol, Indian J. Exp. Biol., 27, 134
Gupta, 2013, Cardioprotective effect of ritonavir, an antiviral drug, in isoproterenol induced myocardial necrosis: a new therapeutic implication, J. Transl. Med., 11, 80, 10.1186/1479-5876-11-80
Kannan, 2013, Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats, Metab. Clin. Exp., 62, 52, 10.1016/j.metabol.2012.06.003
Zhang, 2016, Hydrogen (H2) inhibits isoproterenol-induced cardiac hypertrophy via antioxidative pathways, Front. Pharmacol., 7, 392, 10.3389/fphar.2016.00392
Kolli, 2014, Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension, Biomaterials, 35, 9951, 10.1016/j.biomaterials.2014.08.037
Amin, 2011, The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline, Int. J. Nanomed., 6, 143, 10.2147/IJN.S15308
Pagliari, 2012, Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress, ACS nano, 6, 3767, 10.1021/nn2048069
Niu, 2007, Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy, Cardiovasc. Res., 73, 549, 10.1016/j.cardiores.2006.11.031
Wang, 2009, Cardioprotective effect of salvianolic acid a on isoproterenol-induced myocardial infarction in rats, Eur. J. Pharmacol., 615, 125, 10.1016/j.ejphar.2009.04.061
Sharma, 2001, Cardioprotective potential of Ocimum sanctum in isoproterenol induced myocardial infarction in rats, Mol. Cell. Biochem., 225, 75, 10.1023/A:1012220908636
Stuart, 2016, The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction, J. Mol. Cell. Cardiol., 91, 114, 10.1016/j.yjmcc.2015.12.024
Jalil, 1989, Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle, Circ. Res., 64, 1041, 10.1161/01.RES.64.6.1041
Chen, 2012, Puerarin prevents isoprenaline-induced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression, J. Nutr. Biochem., 23, 1080, 10.1016/j.jnutbio.2011.05.015
Thompson, 1988, Transforming growth factor beta-1 in acute myocardial infarction in rats, Growth Factors, 1, 91, 10.3109/08977198809000251
Yamamoto, 1994, Sustained expression of TGF-β1 underlies development of progressive kidney fibrosis, Kidney Int., 45, 916, 10.1038/ki.1994.122
Oró, 2016, Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis, J. Hepatol., 64, 691, 10.1016/j.jhep.2015.10.020
Herskowitz, 1995, Cytokine mRNA expression in postischemic/reperfused myocardium, Am. J. Pathol., 146, 419
Hirst, 2009, Anti‐inflammatory properties of cerium oxide nanoparticles, Small, 5, 2848, 10.1002/smll.200901048
Bale, 2016, Overview on therapeutic applications of microparticulate drug delivery systems, Crit. Rev.™ Ther. Drug Carrier Syst., 33
Khurana, 2018, 157
Saifi, 2018, 437
Saifi, 2018, Cytotoxicity of nanomaterials: nanotoxicology to address the safety concerns of nanoparticles, Pharm. Nanotechnol., 6, 3, 10.2174/2211738505666171023152928
Nemmar, 2017, Cerium oxide nanoparticles in lung acutely induce oxidative stress, inflammation, and DNA damage in various organs of mice, Oxid. Med. Cell. Longevity, 2017, 10.1155/2017/9639035
Ma, 2012, Induction of pulmonary fibrosis by cerium oxide nanoparticles, Toxicol. Appl. Pharmacol., 262, 255, 10.1016/j.taap.2012.05.005
Rubio, 2017, Synergistic role of nanoceria on the ability of tobacco smoke to induce carcinogenic hallmarks in lung epithelial cells, Nanomedicine, 12, 2623, 10.2217/nnm-2017-0205