Cardiomyocyte-specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: an adaptative response or part of the problem?
Tóm tắt
Recent studies in various rodent models of pathologic ventricular hypertrophy report the re-expression of deiodinase type 3 (D3) in cardiomyocytes. D3 inactivates thyroid hormone (T3) and is mainly expressed in tissues during development. The stimulation of D3 activity in ventricular hypertrophy and subsequent heart failure is associated with severe impairment of cardiac T3 signaling. Hypoxia-induced signaling appears to drive D3 expression in the hypertrophic cardiomyocyte, but other signaling cascades implicated in hypertrophy are also capable of stimulating transcription of the DIO3 gene. Many cardiac genes are transcriptionally regulated by T3 and impairment of T3 signaling will not only reduce energy turnover, but also lead to changes in gene expression that contribute to contractile dysfunction in pathologic remodeling. Whether stimulation of D3 activity and the ensuing local T3-deficiency is an adaptive response of the stressed heart or part of the pathologic signaling network leading to heart failure, remains to be established.
Tài liệu tham khảo
Oka T, Xu J, Molkentin JD (2007) Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 18:117–131. doi:10.1016/j.semcdb.2006.11.012
Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Card Res 63:467–475. doi:10.1016/j.cardiores.2004.01.021
Selvetella G, Hirsch E, Notte A et al (2004) Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Card Res 63:373–380. doi:10.1016/j.cardiores.2004.04.031
Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509. doi:10.1056/NEJM200102153440707
Athea Y, Garnier A, Fortin D (2007) Mitochondrial and energetic cardiac phenotype in hypothyroid rat. Relevance for heart failure. Eur J Phys 455:431–442. doi:10.1007/s00424-007-0307-2
Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29(7):898–938 doi:10.1210/er.2008-0019
Maia AL, Kim BW, Huang SA et al (2005) Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. J Clin Investig 115:2524–2533. doi:10.1172/JCI25083
Lechan RM, Fekete C (2005) Role of thyroid hormone deiodination in the hypothalamus. Thyroid 15:883–897. doi:10.1089/thy.2005.15.883
Bernal J, Guadano-Ferraz A, Morte B (2003) Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13:1005–1012. doi:10.1089/105072503770867174
Visser TJ, Kaptein E, Glatt H et al (1998) Characterization of thyroid hormone sulfotransferases. Chem Biol Interact 109:279–291. doi:10.1016/S0009-2797(97)00139-7
Baqui M, Botero D, Gereben B et al (2003) Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278:1206–1211. doi:10.1074/jbc.M210266200
Friesema EC, Kuiper GG, Jansen J et al (2006) Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Mol Endocrinol 20:2761–2772
Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Investig 116:2571–2579. doi:10.1172/JCI29812
Gereben B, Zeold A, Dentice M et al (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 65:570–590. doi:10.1007/s00018-007-7396-0
de Jesus LA, Carvalho SD, Ribeiro MO et al (2001) The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Investig 108:1379–1385
Ng L, Goodyear RJ, Woods CA et al (2004) Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci USA 101:3474–3479. doi:10.1073/pnas.0307402101
Dentice M, Bandyopadhyay A, Gereben B et al (2005) The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol 7:698–705. doi:10.1038/ncb1272
Marsh-Armstrong N, Huang H, Remo BF et al (1999) Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Neuron 24:871–878. doi:10.1016/S0896-6273(00)81034-X
Hernandez A, Martinez ME, Fiering S et al (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Investig 116:476–484. doi:10.1172/JCI26240
Kester MH, Martinez de Mena R, Obregon MJ et al (2004) Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89:3117–3128. doi:10.1210/jc.2003-031832
Escobar-Morreale HF, Obregon MJ, Escobar del Rey F et al (1999) Tissue-specific patterns of changes in 3, 5, 3′-triiodo-L-thyronine concentrations in thyroidectomized rats infused with increasing doses of the hormone. Which are the regulatory mechanisms? Biochimie 81:453–462. doi:10.1016/S0300-9084(99)80095-9
Wassen FW, Schiel AE, Kuiper GG et al (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815. doi:10.1210/en.143.7.2812
Sabatino L, Iervasi G, Ferrazzi P et al (2000) A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci 68:191–202. doi:10.1016/S0024-3205(00)00929-2
Dentice M, Morisco C, Vitale M et al (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore Md.) 17:1508–1521. doi:10.1210/me.2002-0348
Pachucki J, Hopkins J, Peeters R et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142:13–20. doi:10.1210/en.142.1.13
Trivieri MG, Oudit GY, Sah R et al (2006) Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048. doi:10.1073/pnas.0601072103
Friesema EC, Jansen J, Milici C et al (2005) Thyroid hormone transporters. Vitam Horm 70:137–167. doi:10.1016/S0083-6729(05)70005-4
Pedraza PE, Obregon MJ, Escobar-Morreale HF et al (2006) Mechanisms of adaptation to iodine deficiency in rats: thyroid status is tissue specific. Its relevance for man. Endocrinology 147:2098–2108. doi:10.1210/en.2005-1325
Wagner MS, Morimoto RJ, Dora JM et al (2003) Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol 31:541–550. doi:10.1677/jme.0.0310541
Buermans HPJ, Redout EM, Schiel AE et al (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323. doi:10.1152/physiolgenomics.00185.2004
Simonides WS, Mulcahey MA, Redout EM et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Investig 118:975–983
Olivares EL, Marassi MP, Fortunato RS et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148:4786–4792. doi:10.1210/en.2007-0043
Pol C, Zuidwijk M, Deel E et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. In: Proceedings of the XXVIII European Section Meeting of the International Society for Heart Research, Mediamond International Proceedings, Bologna, Italy, pp 57–60
Pol CJ, Zuidwijk MJ, Deel E et al (2008) Left ventricular myocardial infarction in mice induces sustained cardiac deiodinase type III activity. J Mol Cell Cardiol 44:722–723. doi:10.1016/j.yjmcc.2008.02.029
Pantos C, Mourouzis I, Xinaris C et al (2007) Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodeling. Eur J Endocrinol 156:415–424. doi:10.1530/EJE-06-0707
Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598. doi:10.1161/hh1901.096706
Kinugawa K, Minobe WA, Wood WM et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094
Belke DD, Gloss B, Swanson EA et al (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877. doi:10.1210/en.2007-0009
Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96:1173–1177. doi:10.1152/japplphysiol.00770.2003
Des Tombes AL, van Beek-Harmsen BJ, Lee-de Groot MBE et al (2002) Calibrated histochemistry applied to oxygen supply and demand in hypertrophied myocardium. Microsc Res Tech 58:412–420. doi:10.1002/jemt.10153
Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448. doi:10.1038/nature05602
Kim CH, Cho YS, Chun YS et al (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90:E25–E33. doi:10.1161/hh0202.104923
Kakinuma Y, Miyauchi T, Yuki K et al (2001) Novel molecular mechanism of increased myocardial endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1alpha induced for impaired myocardial energy metabolism. Circulation 103:2387–2394
Bai CG, Liu XH, Liu WQ et al (2008) Regional expression of the hypoxia-inducible factor (HIF) system and association with cardiomyocyte cell cycle re-entry after myocardial infarction in rats. Heart Vessel 23:193–200. doi:10.1007/s00380-007-1029-2
Jürgensen JS, Rosenberger C, Wiesener MS et al (2004) Persistent induction of HIF-1alpha and -2alpha in cardiomyocytes and stromal cells of ischemic myocardium. FASEB J 18:1415–1417
Kido M, Du L, Sullivan CC et al (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46:2116–2124. doi:10.1016/j.jacc.2005.08.045
Parisi Q, Biondi-Zoccai GG, Abbate A (2005) Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction. Int J Cardiol 99:337–339. doi:10.1016/j.ijcard.2003.11.038
Zhu BL, Tanaka S, Ishikawa T et al (2008) Forensic pathological investigation of myocardial hypoxia-inducible factor-1 alpha, erythropoietin and vascular endothelial growth factor in cardiac death. Leg Med 10:11–19. doi:10.1016/j.legalmed.2007.06.002
Lee SH, Wolf PL, Escudero R et al (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342:626–633. doi:10.1056/NEJM200003023420904
Shyu KG, Wang MT, Wang BW (2002) Intramyocardial injection of naked DNA encoding HIF–1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res 54:576–583. doi:10.1016/S0008-6363(02)00259-6
Philipp S, Jürgensen JS, Fielitz J (2006) Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur J Heart Fail 8:347–354. doi:10.1016/j.ejheart.2005.10.009
Huang SA, Mulcahey MA, Crescenzi A et al (2005) TGF-{beta} promotes inactivation of extracellular thyroid hormones via transcriptional stimulation of type 3 iodothyronine deiodinase. Mol Endocrinol (Baltimore, Md.) 19:3126–3136. doi:10.1210/me.2005-0173
Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Card Res 69:15–25. doi:10.1016/j.cardiores.2005.07.007
Rosenkranz S (2004) TGF-β1 and angiotensin networking in cardiac remodeling. Card Res 63:423–432. doi:10.1016/j.cardiores.2004.04.030
Lim H, Zhu YZ (2006) Role of transforming growth factor-β in the progression of heart failure. Cell Mol Life Sci 63:2584–2596. doi:10.1007/s00018-006-6085-8
Kuwahara F, Kai H, Tokuda K et al (2004) Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension 43:739–745. doi:10.1161/01.HYP.0000118584.33350.7d
Villarreal FJ, Dillmann WH (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Am J Physiol 262:H1861–H1866
Dai RP, Dheen ST, He BP et al (2004) Differential expression of cytokines in the rat heart in response to sustained volume overload. Eur J Heart Fail 6:693–703. doi:10.1016/j.ejheart.2003.11.014
Deten A, Hölzl A, Leicht M et al (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207. doi:10.1006/jmcc.2001.1383
Hao J, Wang B, Jones SC et al (2000) Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am J Physiol. Heart Circ Physiol 279:H3020–H3030
Ikeuchi M, Tsutsui H, Shiomi T et al (2004) Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64:526–535. doi:10.1016/j.cardiores.2004.07.017
Matsumoto-Ida M, Takimoto Y, Aoyama T et al (2006) Activation of TGF-beta1-TAK1–p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol. Heart Circ Physiol 290:H709–H715. doi:10.1152/ajpheart.00186.2005
Song L, Yan W, Chen X et al (2007) Myocardial smad4 is essential for cardiogenesis in mouse embryos. Circ Res 101:277–285. doi:10.1161/CIRCRESAHA.107.155630
Schröder D, Heger J, Piper HM et al (2006) Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat. J Mol Med (Berlin, Germany) 84:975–983. doi:10.1007/s00109-006-0090-0
Kester MH, Kuiper GG, Versteeg R et al (2006) Regulation of type III iodothyronine deiodinase expression in human cell lines. Endocrinology 147:5845–5854. doi:10.1210/en.2006-0590
Park HK, Park SJ, Kim CS et al (2001) Enhanced gene expression of renin-angiotensin system, TGF-beta1, endothelin-1 and nitric oxide synthase in right-ventricular hypertrophy. Pharmacol Res 43:265–273. doi:10.1006/phrs.2000.0777
Gianakopoulos PJ, Skerjanc IS (2005) Hedgehog signaling induces cardiomyogenesis in P19 cells. J Biol Chem 280:21022–21028. doi:10.1074/jbc.M502977200
Dentice M, Luongo C, Huang S et al (2007) Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA 104:14466–14471. doi:10.1073/pnas.0706754104
Huang SA, Tu HM, Harney JW et al (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 343:185–189. doi:10.1056/NEJM200007203430305
Huang SA, Fish SA, Dorfman DM et al (2002) A 21-year-old woman with consumptive hypothyroidism due to a vascular tumor expressing type 3 iodothyronine deiodinase. J Clin Endocrinol Metab 87:4457–4461. doi:10.1210/jc.2002-020627
Ruppe MD, Huang SA, Jan de Beur SM (2005) Consumptive hypothyroidism caused by paraneoplastic production of type 3 iodothyronine deiodinase. Thyroid 15:1369–1372. doi:10.1089/thy.2005.15.1369
Kester MH, Toussaint MJ, Punt CA et al (2008) Large induction of type III deiodinase (D3) expression after partial hepatectomy in the regenerating mouse and rat liver. Endocrinology doi:10.1210/en.2008-0344
Lavine KJ, Kovacs A, Ornitz DM (2008) Hedgehog signaling is critical for maintenance of the adult coronary vasculature in mice. J Clin Investig 118:2404–2414
Kusano KF, Pola R, Murayama T et al (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204. doi:10.1038/nm1313
Duman-Scheel M, Weng L, Xin S et al (2002) Hedgehog regulates cell growth and proliferation by inducing Cyclin D and Cyclin E. Nature 417:299–304. doi:10.1038/417299a
McMahon S, Charbonneau M, Grandmont S et al (2006) Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 281:24171–24181. doi:10.1074/jbc.M604507200
Bijlsma MF, Groot AP, Oduro JP et al (2008) Hypoxia induces a hedgehog response mediated by HIF-1α. J Cell Mol Med [Epub ahead of print]. doi:10.1111/j.1582-4934.2008.00491.x
Rajabi M, Kassiotis C, Razeghi P et al (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343. doi:10.1007/s10741-007-9034-1