Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice
Tóm tắt
Từ khóa
Tài liệu tham khảo
Heineke J, Molkentin JD . Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 2006; 7:589–600.
Azhar M, Schultz Jel J, Grupp I, et al. Transforming growth factor beta in cardiovascular development and function. Cytokine Growth Factor Rev 2003; 14:391–407.
Schmierer B, Hill CS . TGF-β-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Bio 2007; 8:970–982.
Schultz Jel J, Witt SA, Glascock BJ, et al. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 2002; 109:787–796.
Rosenkranz S, Flesch M, Amann K, et al. Alterations of β-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-β1 . Am J Physiol Heart Circ Physiol 2002; 283:H1253–H1262.
Wang J, Xu N, Feng X, et al. Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res 2005; 97:821–828.
Ago T, Sadoshima J . GDF15, a cardioprotective TGF-β superfamily protein. Circ Res 2006; 98:294–297.
Xu J, Kimball TR, Lorenz JN, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res 2006; 98:342–350.
Chen H, Yong W, Ren S, et al. Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth. J Biol Chem 2006; 281:27481–27491.
da Costa Martins PA, Bourajjaj M, Gladka M, et al. Conditional Dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008; 118:1567–1576.
Chen JF, Murchison EP, Tang R, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 2008; 105:2111–2116.
Rao PK, Toyama Y, Chiang HR, et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 2009; 105:585–594.
van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 2006; 103:18255–18260.
van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN . Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316:575–579.
Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009; 119:2772–2786.
Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M . MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 2007; 100:416–424.
Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13:613–618.
Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 2007; 170:1831–1840.
Sun Q, Zhang Y, Yang G, et al. Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 2008; 36:2690–2699.
Xiao H, Zhang YY . Understanding the role of transforming growth factor-β signaling in the heart: overviews of studies using genetic mouse models. Clin Exp Pharmacol Physiol 2008; 35:335–341.
Divakaran V, Adrogue J, Ishiyama M, et al. Adaptive and maladaptive effects of SMAD3 signaling in the adult heart after hemodynamic pressure overloading. Circ Heart Fail 2009; 2:633–642.
Umans L, Cox L, Tjwa M, et al. Inactivation of Smad5 in endothelial cells and smooth muscle cells demonstrates that Smad5 is required for cardiac homeostasis. Am J Pathol 2007; 170:1460–1472.
van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105:13027–13032.
Rogler CE, LeVoci L, Ader T, et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 2009; 50:575–584.
Chinchilla A, Lozano E, Daimi H, et al. MicroRNA profiling during mouse ventricular maturation: a role for miR-27b modulating Mef2c expression. Cardiovasc Res 2011; 89:98–108.
Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 2009; 119:2357–2368.
Lin Z, Murtaza I, Wang K, Jiao J, Gao J, Li PF . miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci USA 2009; 106:12103–12108.
Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 2010; 122:1308–1318.
Hu S, Huang M, Li Z, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 2010; 122:S124–S131.
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 2008; 465:980–985.
Da Costa Martins PA, Salic K, Gladka MM, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signaling. Nat Cell Biol 2010; 12:1220–1230.
Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K . Peroxisome proliferator-activated receptor γ activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 2001; 104:1670–1675.
Asakawa M, Takano H, Nagai T, et al. Peroxisome proliferator-activated receptor γ plays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation 2002; 105:1240–1246.
Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM . Cardiomyocyte-specific knockout and agonist of peroxisome proliferators-activated receptor-γ both induce cardiac hypertrophy in mice. Circ Res 2005; 97:372–379.
Ding G, Fu M, Qin Q, et al. Cardiac peroxisome proliferator-activated receptor γ is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 2007; 76:269–279.
Jennewein C, Von Knethern A, Schmid T, Brune B . MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ mRNA destabilization. J Biol Chem 2010; 285:11846–11853.
Karbiener M, Fischer C, Nowitsch S, et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390:247–251.
Yang X, Li C, Herrera PL, Deng CX . Generation of Smad4/Dpc4 conditional knockout mice. Genesis 2002; 32:80–81.
Murakami M, Nakagawa M, Olson EN, Nakagawa O . A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA 2005; 102:18034–18039.
Teng Y, Sun AN, Pan XC, et al. Synergistic function of Smad4 and PTEN in suppressing forestomach squamous cell carcinoma in the mouse. Cancer Res 2006; 66:6972–6981.