Cardiometabolic multimorbidity is associated with a worse Covid-19 prognosis than individual cardiometabolic risk factors: a multicentre retrospective study (CoViDiab II)

Ernesto Maddaloni1,2, Luca D’Onofrio2, Francesco Alessandri2, Carmen Mignogna2, Gaetano Leto3, Giuseppe Porcellini4, Ivano Mezzaroma2, Miriam Lichtner3, Paolo Pozzilli4, Felice Eugenio Agrò4, Monica Rocco5, Francesco Pugliese2, Andrea Lenzi2, Rury R. Holman1, Claudio Maria Mastroianni2, Raffaella Buzzetti2, Camilla Ajassa, Alban Rugova, Federica Alessi, Raissa Aronica, Valeria Belvisi, Matteo Candy, Alessandra Caputi, Anna Carrara, Elena Casali, Eugenio Nelson Cavallari, Giancarlo Ceccarelli, Luigi Celani, Maria Rosa Ciardi, Lucia Coraggio, Ambrogio Curtolo, Claudia D’Agostino, Gabriella d’Ettorre, Francesca De Giorgi, Gabriella De Girolamo, Valeria Filippi, Lucio Gnessi, Cecilia Luordi, Chiara Moretti, Gregorio Egidio Recchia, Marco Ridolfi, Francesco Eugenio Romani, Gianluca Russo, Franco Ruberto, Giulia Savelloni, Guido Siccardi, Antonio Siena, Sara Sterpetti, Serena Valeri, Vera Mauro, Lorenzo Volpicelli, Mikiko Watanabe, Massimo Aiuti, Giuseppe Campagna4, Cosmo Del Borgo, Laura Fondaco, Blerta Kertusha, Frida Leonetti, Raffaella Marocco2, Renato Masala, Paola Zuccalà, Giulia Nonnis, Alessandra Rigoli, Alessandro Strumia, Daniela Alampi
1Diabetes Trial Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
2Umberto I “Policlinico” General Hospital, Sapienza University of Rome, Rome, Italy
3Santa Maria Goretti Hospital, Polo Pontino Sapienza University, Latina, Italy
4Campus Bio-Medico University of Rome, Rome, Italy
5Sant’Andrea Hospital, Sapienza University of Rome, Rome, Italy

Tóm tắt

Abstract Background Cardiometabolic disorders may worsen Covid-19 outcomes. We investigated features and Covid-19 outcomes for patients with or without diabetes, and with or without cardiometabolic multimorbidity. Methods We collected and compared data retrospectively from patients hospitalized for Covid-19 with and without diabetes, and with and without cardiometabolic multimorbidity (defined as ≥ two of three risk factors of diabetes, hypertension or dyslipidaemia). Multivariate logistic regression was used to assess the risk of the primary composite outcome (any of mechanical ventilation, admission to an intensive care unit [ICU] or death) in patients with diabetes and in those with cardiometabolic multimorbidity, adjusting for confounders. Results Of 354 patients enrolled, those with diabetes (n = 81), compared with those without diabetes (n = 273), had characteristics associated with the primary composite outcome that included older age, higher prevalence of hypertension and chronic obstructive pulmonary disease (COPD), higher levels of inflammatory markers and a lower PaO2/FIO2 ratio. The risk of the primary composite outcome in the 277 patients who completed the study as of May 15th, 2020, was higher in those with diabetes (Adjusted Odds Ratio (adjOR) 2.04, 95%CI 1.12–3.73, p = 0.020), hypertension (adjOR 2.31, 95%CI: 1.37–3.92, p = 0.002) and COPD (adjOR 2.67, 95%CI 1.23–5.80, p = 0.013). Patients with cardiometabolic multimorbidity were at higher risk compared to patients with no cardiometabolic conditions (adjOR 3.19 95%CI 1.61–6.34, p = 0.001). The risk for patients with a single cardiometabolic risk factor did not differ with that for patients with no cardiometabolic risk factors (adjOR 1.66, 0.90–3.06, adjp = 0.10). Conclusions Patients with diabetes hospitalized for Covid-19 present with high-risk features. They are at increased risk of adverse outcomes, likely because diabetes clusters with other cardiometabolic conditions.

Từ khóa


Tài liệu tham khảo

Myers LC, Parodi SM, Escobar GJ, Liu VX. Characteristics of Hospitalized Adults With COVID-19 in an Integrated Health Care System in California. JAMA. 2020;23(21):2195–8.

Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372–4.

Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052.

Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region Italy. J Am Med Assoc. 2020;323(16):1574–81.

Sardu C, Gargiulo G, Esposito G, Paolisso G, Marfella R. Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19. Cardiovasc Diabetol. 2020;19:76.

Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8:e21.

Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes. Metab. Res. Rev. 2020. https://doi.org/10.1002/dmrr.3321.

Sardu C, D’Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Outcomes in Patients With Hyperglycemia Affected by Covid-19: Can We Do More on Glycemic Control? Diabetes Care. 2020;43(7):1408–15.

Sardu C, D’Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Hyperglycaemia on admission to hospital and COVID-19. Diabetologia. 2020. https://doi.org/10.1007/s00125-020-05216-2.

Marfella R, Paolisso P, Sardu C, Bergamaschi L, D’Angelo EC, Barbieri M, et al. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients. Diabetes Metab. 2020. https://doi.org/10.1016/j.diabet.2020.05.005.

Shi Q, Zhang X, Jiang F, Zhang X, Hu N, Bimu C, et al. Clinical Characteristics and Risk Factors for Mortality of COVID-19 Patients With Diabetes in Wuhan, China: A Two-Center. Retrospective Study. Diabetes Care. 2020;43(7):1382–91.

Haug N, Deischinger C, Gyimesi M, Kautzky-Willer A, Thurner S, Klimek P. High-risk multimorbidity patterns on the road to cardiovascular mortality. BMC Med. 2020;18:44.

Zhang D, Tang X, Shen P, Si Y, Liu X, Xu Z, et al. Multimorbidity of cardiometabolic diseases: prevalence and risk for mortality from one million Chinese adults in a longitudinal cohort study. BMJ Open. 2019;9:e024476.

Glynn LG. Multimorbidity: another key issue for cardiovascular medicine. Lancet. 2009;374:1421–2.

Luque-Fernandez MA, Schomaker M, Redondo-Sanchez D, Perez M, Vaidya A, Schnitzer ME. Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web application. Int J Epidemiol. 2019;48:640–53.

Griffith G, Morris TT, Tudball M, Herbert A, Mancano G, Pike L, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. medRxiv. Cold Spring Harbor Laboratory Press; 2020.

Riddle MC, Buse JB, Franks PW, Knowler WC, Ratner RE, Selvin E, et al. COVID-19 in people with diabetes: urgently needed lessons from early reports. Diabetes Care. 2020;43:1378–81.

Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes. Metab. Res. Rev. 2020. https://doi.org/10.1002/dmrr.3319.

Zhu L, She Z-G, Cheng X, Qin J-J, Zhang X-J, Cai J, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020;31(6):1068–77.

Maddaloni E, D’Onofrio L, Pozzilli P. Frailty and geography: should these two factors be added to the ABCDE contemporary guide to diabetes therapy? Diabetes Metab Res Rev. 2016;32:169–75.

Mathur R, Hull SA, Badrick E, Robson J. Cardiovascular multimorbidity: the effect of ethnicity on prevalence and risk factor management. Br J Gen Pract. 2011;61:e262–e270270.

Maddaloni E, D'Onofrio L, Alessandri F, Mignogna C, Leto G, Coraggio L, et al. Clinical features of patients with type 2 diabetes with and without Covid-19: a case control study (CoViDiab I). Diabetes Res Clin Pract. 2020;. https://doi.org/10.1016/j.diabres.2020.108454.

World Health Organization. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases.

Sardu C, Maggi P, Messina V, Iuliano P, Sardu A, Iovinella V, et al. Could Anti-Hypertensive Drug Therapy Affect the Clinical Prognosis of Hypertensive Patients With COVID-19 Infection? Data From Centers of Southern Italy. J. Am. Heart Assoc. 2020;9(17):e016948.

Strollo R, Pozzilli P. DPP4 inhibition: Preventing SARS-CoV-2 infection and/or progression of COVID-19? Diabetes. Metab Res Rev. 2020. https://doi.org/10.1002/dmrr.3330.

Guan W, Liang W, Zhao Y, Liang H, Chen Z, Li Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur. Respir. J. 2020;55(5):2000547.

Banerjee A, Pasea L, Harris S, Gonzalez-Izquierdo A, Torralbo A, Shallcross L, et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet. 2020;395:1715–25.

Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J. Intern. Med. 2020;288(2):192–206.

Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 2020;383(2):120–8.

Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system. JAMA Cardiol. 2020;5(7):831–40.

Sardu C, Gambardella J, Morelli MB, Wang X, Marfella R, Santulli G. Hypertension, thrombosis, kidney failure, and diabetes: is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J Clin Med. 2020;9:1417.

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–8.

Rask-Madsen C, King GL. Vascular Complications of Diabetes: Mechanisms of Injury and Protective Factors. Cell Metab. 2013;17:20–33.

Patti G, Cavallari I, Andreotti F, Calabrò P, Cirillo P, Denas G, et al. Prevention of atherothrombotic events in patients with diabetes mellitus: from antithrombotic therapies to new-generation glucose-lowering drugs. Nat Rev Cardiol. 2019;16(2):113–30.

Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in Intensive Care Unit. A report of thromboelastography findings and other parameters of hemostasis. J. Thromb. Haemost. 2020;18(7):1738–42.

Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020;46(6):1105–8.

Petersen A, Bressem K, Albrecht J, Thieß H-M, Vahldiek J, Hamm B, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism. 2020;110:154317.

Zheng KI, Gao F, Wang X-B, Sun Q-F, Pan K-H, Wang T-Y, et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism. 2020;108:154244.

da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, et al. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18:89.

Cull CA, Jensen CC, Retnakaran R, Holman RR. Impact of the metabolic syndrome on macrovascular and microvascular outcomes in type 2 diabetes mellitus. Circulation. 2007;116:2119–266.

Sandoval Y, Januzzi JL, Jaffe AS. Cardiac Troponin for the Diagnosis and Risk-Stratification of Myocardial Injury in COVID-19: JACC Review Topic of the Week. Cardiol: J. Am. Coll; 2020.

Oluwagbemigun K, Buyken AE, Alexy U, Schmid M, Herder C, Nöthlings U. Developmental trajectories of body mass index from childhood into late adolescence and subsequent late adolescence-young adulthood cardiometabolic risk markers. Cardiovasc Diabetol. 2019;18:9.