Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology

Non-coding RNA Research - Tập 2 - Trang 27-37 - 2017
Andrea Raso1, Ellen Dirkx1
1Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, 6229ER Maastricht, The Netherlands

Tài liệu tham khảo

Pagidipati, 2013, Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement, Circulation, 127, 749, 10.1161/CIRCULATIONAHA.112.128413 Mozaffarian, 2015, Heart disease and stroke Statistics—2015 update: a report from the American Heart Association, Circulation, 131, e29, 10.1161/CIR.0000000000000152 Murry, 2006, Regeneration gaps: observations on stem cells and cardiac repair, J. Am. Coll. Cardiol., 47, 1777, 10.1016/j.jacc.2006.02.002 Sutton, 2000, Left ventricular remodeling after myocardial infarction pathophysiology and therapy, Circulation, 101, 2981, 10.1161/01.CIR.101.25.2981 Nelson, 2009, Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells, Circulation, 120, 408, 10.1161/CIRCULATIONAHA.109.865154 Min, 2003, Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells, J. Thorac. Cardiovasc Surg., 125, 361, 10.1067/mtc.2003.101 Meyer, 2009, Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial, Eur. Heart J., 30, 2978, 10.1093/eurheartj/ehp374 Houtgraaf, 2012, First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction, J. Am. Coll. Cardiol., 59, 539, 10.1016/j.jacc.2011.09.065 Bolli, 2011, Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial, Lancet, 378, 1847, 10.1016/S0140-6736(11)61590-0 Hirt, 2014, Cardiac tissue engineering: state of the art, Circ. Res., 114, 354, 10.1161/CIRCRESAHA.114.300522 Bersell, 2009, Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury, Cell, 138, 257, 10.1016/j.cell.2009.04.060 Rao, 2009, Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure, Circ. Res., 105, 585, 10.1161/CIRCRESAHA.109.200451 van Rooij, 2009, A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance, Dev. Cell, 17, 662, 10.1016/j.devcel.2009.10.013 Goldenberg, 1886, Ueber Atrophie und Hypertrophie der Muskelfasern des Herzens, Virchows Arch. Pathol. Anat. Physiol. Klin., 103, 88, 10.1007/BF01878568 Karsner, 1925, The state of the cardiac muscle in hypertrophy and atrophy, Am. J. Pathol., 1, 351 MacMahon, 1937, Hyperplasia and regeneration of the myocardium in infants and in children, Am. J. Pathol., 13, 845 Zak, 1974, Development and proliferative capacity of cardiac muscle cells, Circ. Res., 35 Grove, 1969, Biochemical correlates of cardiac hypertrophy: IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat, Circ. Res., 25, 473, 10.1161/01.RES.25.4.473 Bergmann, 2009, Evidence for cardiomyocyte renewal in humans, Science, 324, 98, 10.1126/science.1164680 Sokol, 2005, Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth, Genes Dev., 19, 2343, 10.1101/gad.1356105 Ivey, 2008, MicroRNA regulation of cell lineages in mouse and human embryonic stem cells, Cell stem Cell, 2, 219, 10.1016/j.stem.2008.01.016 Zhang, 2013, Targeted MicroRNA interference promotes postnatal cardiac cell cycle Re-Entry, J. Regen. Med., 2, 2 Cao, 2013, MicroRNA profiling during rat ventricular maturation: a role for miR-29a in regulating cardiomyocyte cell cycle re-entry, FEBS Lett., 587, 1548, 10.1016/j.febslet.2013.01.075 Liu, 2008, MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart, Genes Dev., 22, 3242, 10.1101/gad.1738708 Jopling, 2005, Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA, Science, 309, 1577, 10.1126/science.1113329 van der Ree, 2016, Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma, Aliment. Pharmacol. Ther., 43, 102, 10.1111/apt.13432 Orlic, 2001, Bone marrow cells regenerate infarcted myocardium, Nature, 410, 701, 10.1038/35070587 Wu, 2006, Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart, Cell, 127, 1137, 10.1016/j.cell.2006.10.028 Tateishi, 2007, Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration, J. Cell Sci., 120, 1791, 10.1242/jcs.006122 Beltrami, 2003, Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, 114, 763, 10.1016/S0092-8674(03)00687-1 Quaini, 2002, Chimerism of the transpanted heart, The New England Journal of Medicine, 346 Bailey, 2012, Sca-1 knockout impairs myocardial and cardiac progenitor cell function, Circ. Res., 111, 750, 10.1161/CIRCRESAHA.112.274662 Uchida, 2013, Sca1-derived cells are a source of myocardial renewal in the murine adult heart, Stem Cell Rep., 1, 397, 10.1016/j.stemcr.2013.09.004 Urbanek, 2005, Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure, PNAS, 102, 8692, 10.1073/pnas.0500169102 Tallinia, 2009, c-kit expression identifies cardiovascular precursors in the neonatal heart, PNAS, 106, 1808, 10.1073/pnas.0808920106 Kubo, 2008, Increased cardiac myocyte progenitors in failing human hearts, Circulation, 118, 649, 10.1161/CIRCULATIONAHA.107.761031 Murry, 2004, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature, 428, 664, 10.1038/nature02446 Balsam, 2008, Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium, Nature, 428, 668, 10.1038/nature02460 Patella, 1998, Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy, Circulation, 97, 971, 10.1161/01.CIR.97.10.971 Hsieh, 2007, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury, Nat. Med., 13, 970, 10.1038/nm1618 van Berlo, 2014, c-kit+ cells minimally contribute cardiomyocytes to the heart, Nature, 509, 337, 10.1038/nature13309 Sultana, 2015, Resident c-kit(+) cells in the heart are not cardiac stem cells, Nat. Commun., 6, 8701, 10.1038/ncomms9701 Liu, 2016, Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes, Cell Res., 26, 119, 10.1038/cr.2015.143 Yacoub, 2013, CADUCEUS, SCIPIO, ALCADIA: cell therapy trials using cardiac-derived cells for patients with post myocardial infarction LV dysfunction, still evolving, Glob. Cardiol. Sci. Pract., 5 Limana, 2005, Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation, Circ. Res., 97, e73, 10.1161/01.RES.0000186276.06104.04 Limana, 2011, HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3, PLoS One, 6, e19845, 10.1371/journal.pone.0019845 Hosoda, 2011, Human cardiac stem cell differentiation is regulated by a mircrine mechanism, Circulation, 123, 1287, 10.1161/CIRCULATIONAHA.110.982918 Cohen-Barak, 2003, Sox6 regulation of cardiac myocyte development, Nucleic Acids Res., 31, 5941, 10.1093/nar/gkg807 Yamamoto, 1999, Isolation of a mammalian homologue of a fission yeast differentiation regulator, Mol. Cell. Biol., 3829, 10.1128/MCB.19.5.3829 Sluijter, 2010, MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells, Arterioscler. Thromb. Vasc. Biol., 30, 859, 10.1161/ATVBAHA.109.197434 Liang, 2014, miR-10a regulates proliferation of human cardiomyocyte progenitor cells by targeting GATA6, PLoS One, 9, e103097, 10.1371/journal.pone.0103097 Zhao, 2014, beta-arrestin2/miR-155/GSK3beta regulates transition of 5'-azacytizine-induced Sca-1-positive cells to cardiomyocytes, J. Cell Mol. Med., 18, 1562, 10.1111/jcmm.12339 Liu, 2011, MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1, J. Cell Mol. Med., 15, 1474, 10.1111/j.1582-4934.2010.01104.x Sirish, 2012, MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts, J. Mol. Cell Cardiol., 52, 264, 10.1016/j.yjmcc.2011.10.012 Nag, 1980, Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution, Cytobios, 28, 41 Souders, 2009, Cardiac fibroblast: the renaissance cell, Circ. Res., 105, 1164, 10.1161/CIRCRESAHA.109.209809 Ieda, 2010, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, 142, 375, 10.1016/j.cell.2010.07.002 Shechter, 2009, A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint, PNAS, 106, 749, 10.1073/pnas.0812207106 Song, 2012, Heart repair by reprogramming non-myocytes with cardiac transcription factors, Nature, 485, 599, 10.1038/nature11139 Qian, 2012, In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, 485, 593, 10.1038/nature11044 Efe, 2011, Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy, Nat. Cell Biol., 13, 215, 10.1038/ncb2164 Wang, 2014, Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4, Cell Rep., 6, 951, 10.1016/j.celrep.2014.01.038 Traverse, 2012, Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial, JAMA, 308, 2380, 10.1001/jama.2012.28726 Cordes, 2009, miR-145 and miR-143 regulate smooth muscle cell fate and plasticity, Nature, 460, 705, 10.1038/nature08195 Judson, 2009, Embryonic stem cell-specific microRNAs promote induced pluripotency, Nat. Biotechnol., 27, 459, 10.1038/nbt.1535 Anokye-Danso, 2011, Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency, Cell Stem Cell, 8, 376, 10.1016/j.stem.2011.03.001 Yoo, 2011, MicroRNA-mediated conversion of human fibroblasts to neurons, Nature, 476, 228, 10.1038/nature10323 Jayawardena, 2012, MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes, Circ. Res., 110, 1465, 10.1161/CIRCRESAHA.112.269035 Callis, 2009, MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice, J. Clin. Invest., 119, 2772, 10.1172/JCI36154 Townley-Tilson, 2010, MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease, Int. J. Biochem. Cell Biol., 42, 1252, 10.1016/j.biocel.2009.03.002 Fish, 2008, miR-126 regulates angiogenic signaling and vascular integrity, Dev. Cell, 15, 272, 10.1016/j.devcel.2008.07.008 Zhao, 2007, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2, Cell, 129, 303, 10.1016/j.cell.2007.03.030 Jayawardena, 2015, MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function, Circ. Res., 116, 418, 10.1161/CIRCRESAHA.116.304510 Protze, 2012, A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells, J. Mol. Cell Cardiol., 53, 323, 10.1016/j.yjmcc.2012.04.010 Nam, 2012, Reprogramming of human fibroblasts toward a cardiac fate, PNAS, 110, 5588 Hou, 2013, Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds, Science, 341, 651, 10.1126/science.1239278 Fu, 2015, Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails, Cell Res., 25, 1013, 10.1038/cr.2015.99 Beltrami, 2001, Evidence that human cardiac myocytes divide after myocardial infarction, N. Engl. J. Med., 344, 1750, 10.1056/NEJM200106073442303 Robledo, 1956, Myocardial regeneration in young rats, Am. J. Pathol., 32, 1215 Nag, 1983, DNA synthesis in rat heart cells after injury and the regeneration of myocardia, Tissue Cell, 15, 597, 10.1016/0040-8166(83)90010-1 Kajstura, 1994, Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats, Circ. Res., 74, 383, 10.1161/01.RES.74.3.383 Senyo, 2013, Mammalian heart renewal by pre-existing cardiomyocytes, Nature, 493, 433, 10.1038/nature11682 Kimura, 2015, Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart, Nature, 523, 226, 10.1038/nature14582 Jopling, 2010, Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, Nature, 464, 606, 10.1038/nature08899 Kikuchi, 2010, Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes, Nature, 464, 601, 10.1038/nature08804 Livet, 2007, Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature, 450, 56, 10.1038/nature06293 Gupta, 2012, Clonally dominant cardiomyocytes direct heart morphogenesis, Nature, 484, 479, 10.1038/nature11045 Drenckhahn, 2008, Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development, Dev. Cell, 15, 521, 10.1016/j.devcel.2008.09.005 Porrello, 2011, Transient regenerative potential of the neonatal mouse heart, Science, 331, 1078, 10.1126/science.1200708 Porrello, 2011, MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes, Circ. Res., 109, 670, 10.1161/CIRCRESAHA.111.248880 Liz, 2014, Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region, Mol. Cell, 55, 138, 10.1016/j.molcel.2014.05.005 Hullinger, 2012, Inhibition of miR-15 protects against cardiac ischemic injury, Circ. Res., 110, 71, 10.1161/CIRCRESAHA.111.244442 Eulalio, 2012, Functional screening identifies miRNAs inducing cardiac regeneration, Nature, 492, 376, 10.1038/nature11739 Chen, 2013, mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts, Circ. Res., 112, 1557, 10.1161/CIRCRESAHA.112.300658 Olive, 2009, miR-19 is a key oncogenic component of mir-17-92, Genes Dev., 23, 2839, 10.1101/gad.1861409 Tian, 2015, A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice, Sci. Transl. Med., 7, 279, 10.1126/scitranslmed.3010841 Liu, 2015, miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling, Cell Metab., 21, 584, 10.1016/j.cmet.2015.02.014 Olson, 2014, MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease, Sci. Transl. Med., 6, 239ps3, 10.1126/scitranslmed.3009008 Philippen, 2015, Antisense MicroRNA therapeutics in cardiovascular disease: quo vadis?, Mol. Ther, 23, 1810, 10.1038/mt.2015.133 Zacchigna, 2014, Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system, Circ. Res., 114, 1827, 10.1161/CIRCRESAHA.114.302331 Xie, 2002, The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy, PNAS, 99, 10405, 10.1073/pnas.162250899 Atchison, 1965, Adenovirus-associated defective virus particles, Science, 149, 754, 10.1126/science.149.3685.754 Gao, 2004, Clades of Adeno-associated viruses are widely disseminated in human tissues, J. Virol., 78, 6381, 10.1128/JVI.78.12.6381-6388.2004 Pacak, 2006, Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo, Circ. Res., 99, e3, 10.1161/01.RES.0000237661.18885.f6 Bish, 2008, Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat, Hum. Gene Ther., 19, 1359, 10.1089/hum.2008.123 Ganesan, 2013, MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors, Circulation, 127, 2097, 10.1161/CIRCULATIONAHA.112.000882 Quattrocelli, 2013, Long-term miR-669a therapy alleviates chronic dilated cardiomyopathy in dystrophic mice, J. Am. Heart Assoc., 2, e000284, 10.1161/JAHA.113.000284 Wang, 2005, Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart, Nat. Biotechnol., 23, 321, 10.1038/nbt1073 Palomeque, 2007, Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo, Gene Ther., 989, 10.1038/sj.gt.3302895 Pleger, 2007, Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue, Circulation, 115, 2506, 10.1161/CIRCULATIONAHA.106.671701 Gao, 2011, Transendocardial delivery of AAV6 results in highly efficient and global cardiac gene transfer in rhesus macaques, Hum. Gene Ther., 22, 979, 10.1089/hum.2011.042 Kawase, 2011, Rescuing the failing heart by targeted gene transfer, J. Am. Coll. Cardiol., 57, 1169, 10.1016/j.jacc.2010.11.023 Greenberg, 2016, Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure, Gene Ther., 23, 313, 10.1038/gt.2015.109 Pleger, 2011, Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model, Sci. Transl. Med., 3, 92ra64, 10.1126/scitranslmed.3002097 Fish, 2013, AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling, Circ. Heart Fail, 6, 310, 10.1161/CIRCHEARTFAILURE.112.971325 http://www.uniqure.com/gene-therapy/glybera.php, Glybera is the first gene therapy approved in the Western world. Carpentier, 2012, Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients, J. Clin. Endocrinol. Metab., 97, 1635, 10.1210/jc.2011-3002 Pacak, 2008, Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice, Genet. Vaccines Ther., 6 Pulicherla, 2011, Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer, Mol. Ther., 19, 1070, 10.1038/mt.2011.22 Matoba, 2014, Nanoparticle-mediated drug delivery system for cardiovascular disease, Int. Heart J., 55, 281, 10.1536/ihj.14-150 Zhang, 2013, Progress in microRNA delivery, J. Control Release, 172, 962, 10.1016/j.jconrel.2013.09.015 Muthiah, 2013, Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics, Expert Opin. Drug Deliv., 10, 1259, 10.1517/17425247.2013.798640 Chistiakov, 2012, Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology, Drug Deliv., 19, 392, 10.3109/10717544.2012.738436 Ho, 2016, Nanoparticle drug delivery systems and their use in cardiac tissue therapy, Nanomedicine (Lond)., 11, 693, 10.2217/nnm.16.6 Zhu, 2016, Nanoparticles-assisted stem cell therapy for ischemic heart disease, Stem Cells Int., 1384658 Thakor, 2013, Nanooncology: the future of cancer diagnosis and therapy, Ca Cancer J. Clin., 395, 10.3322/caac.21199 Kulkarni, 2016, Reporter nanoparticle that monitors its anticancer efficacy in real time, Proc. Natl. Acad. Sci. U. S. A., 113, E2104, 10.1073/pnas.1603455113 Shu, 2014, Stable RNA nanoparticles as potential new generation drugs for cancer therapy, Adv. Drug Deliv. Rev., 66, 74, 10.1016/j.addr.2013.11.006 Biray Avci, 2013, Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells, Cell Biol. Int., 37, 1205 Eloy, 2014, Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery, Colloids Surf. B Biointerfaces, 123, 345, 10.1016/j.colsurfb.2014.09.029 Tan, 2011, Influence of red blood cells on nanoparticle targeted delivery in microcirculation, Soft Matter, 8, 1934, 10.1039/C2SM06391C Toy, 2011, Effect of particle size, density and shape on margination of nanoparticles in microcirculation, Nanotechnology, 22, 115101, 10.1088/0957-4484/22/11/115101 Hsieh, 2006, Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers, J. Clin. Invest., 116, 237, 10.1172/JCI25878 Sy, 2010, Surface functionalization of polyketal microparticles with nitrilotriacetic acid-nickel complexes for efficient protein capture and delivery, Biomaterials, 31, 4987, 10.1016/j.biomaterials.2010.02.063 Kobayashi, 2014, Surface engineering of nanoparticles for therapeutic applications, Polym. J., 46, 460, 10.1038/pj.2014.40 Skelton, 2014, SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development, Stem Cell Res., 13, 172, 10.1016/j.scr.2014.04.016 Aso, 2007, Effective uptake of N-acetylglucosamine-conjugated liposomes by cardiomyocytes in vitro, J. Control Release, 122, 189, 10.1016/j.jconrel.2007.07.003 Gray, 2011, N-acetylglucosamine conjugated to nanoparticles enhances myocyte uptake and improves delivery of a small molecule p38 inhibitor for post-infarct healing, J. Cardiovasc Transl. Res., 4, 631, 10.1007/s12265-011-9292-0 Chang, 2013, Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction, J. Control Release, 170, 287, 10.1016/j.jconrel.2013.04.022 Chorny, 2010, Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields, Proc. Natl. Acad. Sci. U. S. A., 107, 8346, 10.1073/pnas.0909506107 Kang, 2011, Near-infrared light-responsive core ShellNanogels for targeted drug delivery, AcsNano, 5, 5094 Cobbe, 1980, The time of onset and severity of acidosis in myocardial ischaemia, J. pf Mol. Cell. Cardiol., 12, 745, 10.1016/0022-2828(80)90077-2 Yan, 1992, Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle, Circ. Res., 71, 460, 10.1161/01.RES.71.2.460 Sosunova, 2012, pH (low) insertion peptide (pHLIP) targets ischemic myocardium, PNAS, 110, 82, 10.1073/pnas.1220038110 Andreev, 2010, pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents, Mol. Membr. Biol., 27, 341, 10.3109/09687688.2010.509285 Dijkmans, 2004, Microbubbles and ultrasound: from diagnosis to therapy, Eur. J. Echocardiogr., 5, 245, 10.1016/j.euje.2004.02.001 Chen, 2016, Delivery of hydrogen sulfide by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury, Sci. Rep., 6, 30643, 10.1038/srep30643 Huang, 2004, Acoustically active liposomes for drug encapsulation and ultrasound-triggered release, Biochim. Biophys. Acta, 1665, 134, 10.1016/j.bbamem.2004.07.003 Di Mauro, 2016, Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs, Nanomedicine, 11, 891, 10.2217/nnm.16.26