Cardiac magnetic resonance in arrhythmogenic cardiomyopathies
Tóm tắt
Over the past few years, the approach to the ‘arrhythmic patient’ has profoundly changed. An early clinical presentation of arrhythmia is often accompanied by non-specific symptoms and followed by inconclusive electrocardiographic findings. In this scenario, cardiac magnetic resonance (CMR) has been established as a clinical tool of fundamental importance for a correct prognostic stratification of the arrhythmic patient. This technique provides a high-spatial-resolution tomographic evaluation of the heart, which allows studying accurately the ventricular volumes, identifying even segmental kinetic anomalies and properly detecting diffuse or focal tissue alterations through an excellent tissue characterization, while depicting different patterns of fibrosis distribution, myocardial edema or fatty substitution. Through these capabilities, CMR has a pivotal role for the adequate management of the arrhythmic patient, allowing the identification of those phenotypic manifestations characteristic of structural heart diseases. Therefore, CMR provides valuable information to reclassify the patient within the wide spectrum of potentially arrhythmogenic heart diseases, the definition of which remains the major determinants for both an adequate treatment and a poor prognosis. The purpose of this review study was to focus on the role of CMR in the evaluation of the main cardiac clinical entities associated with arrhythmogenic phenomena and to present a brief debate on the main pathophysiological mechanisms involved in the arrhythmogenesis process.
Tài liệu tham khảo
Zipes DPHWJJ (1998) Clinical cardiology: new frontiers sudden cardiac death. Circulation 98:2334–2351
Muser D, Santangeli P, Selvanayagam JP, Nucifora G (2019) Role of cardiac magnetic resonance imaging in patients with idiopathic ventricular arrhythmias. Curr Cardiol Rev 15:12–23
Bello D, Fieno DS, Kim RJ, Pereles S, Passman R, Song G et al (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45(7):1104–1108. https://doi.org/10.1016/j.jacc.2004.12.057
Bogun F, Desjardins B, Good E, Gupta S, Crawford T, Oral H et al (2010) Delayed-enhanced magnetic resonance imaging in non-ischemic cardiomyopathy: utility for identifying the ventricular arrhythmia substrate. J Am Coll Cardiol 53(13):1138–1145
Görmeli CA, Özdemir ZM, Kahraman AS, Yağmur J, Özdemir R, Çolak C (2017) The evaluation of non-ischemic dilated cardiomyopathy with T1 mapping and ECV methods using 3T cardiac MRI. Radiol Medica 122(2):106–112
De Jong S, Van Veen TAB, Van Rijen HVM, De Bakker JMT (2011) Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol 57(6):630–638
Shenasa M (2019) Fibrosis and ventricular arrhythmogenesis role of cardiac MRI. Card Electrophysiol Clin 11(3):551–562. https://doi.org/10.1016/j.ccep.2019.06.002
Oreto G (2007) Genesi delle aritmie caridache. In: Disordini del ritmo cardiaco. Diagnosi delle aritmie cardiache all’elettrocardiogramma di superfice, pp 197–210
Marcus GM (2020) Evaluation and management of premature ventricular complexes. Circulation 141:1404–1418
Tzou WS, Zado SE, Lin D, Callans DJ, Dixit S, Cooper JM et al (2011) Sinus rhythm ECG criteria associated with basal-lateral ventricular tachycardia substrate in patients with nonischemic cardiomyopathy. J Cardiovasc Electrophysiol 22:1351–1358
De Lazzari M, Zorzi A, Cipriani A, Susana A, Mastella G, Rizzo A et al (2018) Relationship between electrocardiographic findings and cardiac. J Am Heart Assoc 7(22):e009855
Corrado D, Van TPJ, Mckenna WJ, Hauer RNW, Anastastakis A, Asimaki A et al (2020) Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J 41:1414–1427
Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F et al (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30(6):1512–1520
Peters S, Trümmel M, Meyners W (2004) Prevalence of right ventricular dysplasia-cardiomyopathy in a non-referral hospital. Int J Cardiol 97(3):499–501
Ohno S (2016) The genetic background of arrhythmogenic right ventricular cardiomyopathy. J Arrhythmia 32(5):398–403. https://doi.org/10.1016/j.joa.2016.01.006
Herren T, Gerber PA, Duru F (2009) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a not so rare “disease of the desmosome” with multiple clinical presentations. Clin Res Cardiol 98(3):141–158
Saffitz JE (2011) Arrhythmogenic cardiomyopathy: Advances in diagnosis and disease pathogenesis. Circulation 124(15):390–392
Gomes J, Finlay M, Ahmed AK, Ciaccio EJ, Asimaki A, Saffitz JE et al (2012) Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur Heart J 33(15):1942–1953
Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D et al (2006) Contemporary definitions and classification of the cardiomyopathies an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional. Circulation 113:1807–1816
Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C et al (1982) Right ventricular dysplasia: a report of 24 adult cases. Circulation 65:384–398
Belhassen B, Shmilovich H, Nof E, Milman A (2020) A case report of arrhythmogenic ventricular cardiomyopathy presenting with sustained ventricular tachycardia arising from the right and the left ventricles before structural changes are documented. Eur Hear J Case Rep 4(1):1–7
Miles C, Finocchiaro G, Papadakis M, Gray B, Westaby J, Ensam B et al (2019) Sudden death and left ventricular involvement in arrhythmogenic cardiomyopathy. Circulation 139(15):1786–1797
Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/Dysplasia: proposed modification of the task force criteria. Circulation 121(13):1533–1541
Jurlander R, Mills HL, Espersen KI, Raja AA, Svendsen JH, Theilade J et al (2020) Screening relatives in arrhythmogenic right ventricular cardiomyopathy: yield of imaging and electrical investigations. Eur Heart J Cardiovasc Imaging 21(2):175–182
Platonov PG, Calkins H, Hauer RN, Corrado D, Svendsen JH, Wichter T et al (2016) High interobserver variability in the assessment of epsilon waves: Implications for diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Hear Rhythm 13(1):208–216. https://doi.org/10.1016/j.hrthm.2015.08.031
Corrado D, Basso C, Pavei A, Michieli P, Schiavon MTG (2006) Trends in sudden cardiovascular death in young competitive athletes. JAMA 296(13):1593–1601
La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006
Heidbuchel H, Prior DL, La Gerche A (2012) Ventricular arrhythmias associated with long-term endurance sports: What is the evidence? Br J Sports Med. 46(SUPPL. I):i44–50
Te Riele ASJM, James CA, Rastegar N, Bhonsale A, Murray B, Tichnell C et al (2014) Yield of serial evaluation in at-risk family members of patients with ARVD/C. J Am Coll Cardiol 64(3):293–301
Francone M, Di Cesare E, Cademartiri F, Pontone G, Lovato L, Matta G et al (2014) Italian registry of cardiac magnetic resonance. Eur J Radiol 83:e15–22
Schicchi N, Fogante M, Oliva M, Esposto Pirani P, Agliata G, Giuseppetti GM et al (2019) Radiation dose and image quality with new protocol in lower extremity computed tomography angiography. Radiol Medica 124(3):184–190. https://doi.org/10.1007/s11547-018-0963-7
De Marco E, Vacchiano G, Frati P, La Russa R, Santurro A, Scopetti M et al (2018) Evolution of post-mortem coronary imaging: from selective coronary arteriography to post-mortem CT-angiography and beyond. Radiol Medica 123(5):351–358. https://doi.org/10.1007/s11547-018-0855-x
Cozzi D, Bargagli E, Calabrò AG, Torricelli E, Giannelli F, Cavigli E et al (2018) Atypical HRCT manifestations of pulmonary sarcoidosis. Radiol Medica 123(3):174–184
Squillaci E, Bolacchi F, Ricci F, De Stasio V, Pugliese L, Di Martino A et al (2019) Radiologists’ recommendations for additional imaging (RAI) in the inpatient setting. Radiol Medica 124(5):432–437. https://doi.org/10.1007/s11547-018-0982-4
Compagnone G, Padovani R, D’Avanzo MA, Grande S, Campanella F, Rosi A et al (2018) Summary of the Italian inter-society recommendations for radiation protection optimization in interventional radiology. Radiol Medica 123(5):378–384
Agostini A, Borgheresi A, Mari A, Floridi C, Bruno F, Carotti M et al (2019) Dual-energy CT: theoretical principles and clinical applications. Radiol Medica 124(12):1281–1295. https://doi.org/10.1007/s11547-019-01107-8
Secchi F, Alì M, Petrini M, Romana F, Andrea P, Carminati M et al (2018) Blood—threshold CMR volume analysis of functional univentricular heart. Radiol Med 123(5):331–337
Mantini C, Di Giammarco G, Pizzicannella J, Gallina S, Ricci F, D’Ugo E et al (2018) Grading of aortic stenosis severity: a head-to-head comparison between cardiac magnetic resonance imaging and echocardiography. Radiol Med 123(9):643–654
Schicchi N, Tagliati C, Agliata G, Esposto P, Raffaella P (2018) MRI evaluation of peripheral vascular anomalies using time-resolved imaging of contrast kinetics (TRICKS) sequence. Radiol Med 123(8):563–571
Karakas Z, Yilmaz Y, Bayramoglu Z, Karaman S, Aydogdu S, Karagenic AO et al (2018) Magnetic resonance imaging during management of patients with transfusion-dependent thalassemia : a single-center experience. Radiol Med 123(8):572–576
Tessa C, Del Meglio J, Lilli A, Diciotti S, Salvatori L, Giannelli M et al (2018) T1 and T2 mapping in the identification of acute myocardial injury in patients with NSTEMI. Radiol Med 123(12):926–934
Di Cesare E, Patriarca L, Panebianco L, Bruno F, Palumbo P, Cannizzaro E et al (2018) Coronary computed tomography angiography in the evaluation of intermediate risk asymptomatic individuals. Radiol Medica 123(9):686–694. https://doi.org/10.1007/s11547-018-0898-z
Salerno S, Laghi A, Cantone MC, Sartori P, Pinto A, Frija G (2019) Overdiagnosis and overimaging: an ethical issue for radiological protection. Radiol Medica 124(8):714–720. https://doi.org/10.1007/s11547-019-01029-5
Valente T, Abu-Omar A, Sica G, Clemente A, Muto M, Bocchini G et al (2018) Acquired peripheral pulmonary artery aneurysms: morphological spectrum of disease and multidetector computed tomography angiography findings—cases series and literature review. Radiol Medica 123(9):664–675. https://doi.org/10.1007/s11547-018-0900-9
Sverzellati N, Odone A, Silva M, Polverosi R, Florio C, Cardinale L et al (2018) Structured reporting for fibrosing lung disease: a model shared by radiologist and pulmonologist. Radiol Medica 123(4):245–253
La Russa R, Catalano C, Di Sanzo M, Scopetti M, Gatto V, Santurro A et al (2019) Postmortem computed tomography angiography (PMCTA) and traditional autopsy in cases of sudden cardiac death due to coronary artery disease: a systematic review and meta-analysis. Radiol Medica 124(2):109–117. https://doi.org/10.1007/s11547-018-0943-y
Ippolito D, Riva L, Talei Franzesi CR, Cangiotti C, De Vito A, Di Gennaro F et al (2019) Diagnostic efficacy of model-based iterative reconstruction algorithm in an assessment of coronary artery in comparison with standard hybrid-Iterative reconstruction algorithm: dose reduction and image quality. Radiol Medica 124(5):350–359. https://doi.org/10.1007/s11547-018-0964-6
Zhao Y, Zuo Z, Cheng S, Wu Y (2018) CT pulmonary angiography using organ dose modulation with an iterative reconstruction algorithm and 3D Smart mA in different body mass indices: image quality and radiation dose. Radiol Medica 123(9):676–685. https://doi.org/10.1007/s11547-018-0899-y
Bi Y, Yu Z, Han X, Ren J (2018) Agitation thrombolysis and catheter-directed thrombolysis for normotensive patients with acute pulmonary thromboembolism. Radiol Medica 123(5):338–344. https://doi.org/10.1007/s11547-017-0848-1
Agliata G, Schicchi N, Agostini A, Fogante M, Mari A, Maggi S et al (2019) Radiation exposure related to cardiovascular CT examination: comparison between conventional 64-MDCT and third-generation dual-source MDCT. Radiol Medica 124(8):753–761. https://doi.org/10.1007/s11547-019-01036-6
Vermes E, Strohm O, Otmani A, Childs H, Duff H, Friedrich MG (2011) Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria. JACC Cardiovasc Imaging 4(3):282–287. https://doi.org/10.1016/j.jcmg.2011.01.005
Borgquist R, Haugaa KH, Gilljam T, Bundgaard H, Hansen J, Eschen O et al (2014) The diagnostic performance of imaging methods in ARVC using the 2010 task force criteria. Eur Heart J Cardiovasc Imaging 15(11):1219–1225
Heermann P, Fritsch H, Koopmann M, Sporns P, Paul M, Heindel W et al (2019) Biventricular myocardial strain analysis using cardiac magnetic resonance feature tracking (CMR-FT) in patients with distinct types of right ventricular diseases comparing arrhythmogenic right ventricular cardiomyopathy (ARVC), right ventricular outflow-t. Clin Res Cardiol 108(10):1147–1162. https://doi.org/10.1007/s00392-019-01450-w
Zghaib T, Ghasabeh MA, Assis FR, Chrispin J, Keramati A, Misra S et al (2018) Regional strain by cardiac magnetic resonance imaging improves detection of right ventricular scar compared with late gadolinium enhancement on a multimodality scar evaluation in patients with arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Imaging 11(9):e007546
Prati G, Vitrella G, Allocca G, Muser D, Buttignoni SC, Piccoli G et al (2015) Right ventricular strain and dyssynchrony assessment in arrhythmogenic right ventricular cardiomyopathy: cardiac magnetic resonance feature-tracking study. Circ Cardiovasc Imaging 8(11):1–10
Casolo GC, Poggesi L, Boddi M, Fazi A, Bartolozzi C, Lizzadro G et al (1987) ECG-gated magnetic resonance imaging in right ventricular dysplasia. Am Heart J 113(5):1245–1248
Di Cesare E (2003) MRI assessment of right ventricular dysplasia. Eur Radiol 13:1387–1393
Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45(1):98–103. https://doi.org/10.1016/j.jacc.2004.09.053
Fogel MA, Weinberg PM, Harris M, Rhodes L (2006) Usefulness of magnetic resonance imaging for the diagnosis of right ventricular dysplasia in children. Am J Cardiol 97(8):1232–1237
Yoo S, Grosse-wortmann L, Hamilton RM (2010) Magnetic resonance imaging assessment of arrhythmogenic right ventricular cardiomyopathy/dysplasia in children. Korean Circ J 40(8):357–367
te Riele SJM, James CA, Sawant AC, Bhonsale A, Groeneweg JA, Mast TP et al (2015) Arrhythmogenic right ventricular dysplasia/cardiomyopathy in the pediatric population characterization, clinical disease with adult-onset. Tandri. 1(6):551–560
Andreini D, Dello Russo A, Pontone G, Mushtaq S, Conte E, Perchinunno M et al (2020) CMR for identifying the substrate of ventricular arrhythmia in patients with normal echocardiography. JACC Cardiovasc Imaging 13(2):410–421
Mavrogeni SI, Markousis-Mavrogenis G, Aggeli C, Tousoulis D, Kitas GD, Kolovou G et al (2019) Arrhythmogenic inflammatory cardiomyopathy in autoimmune rheumatic diseases: a challenge for cardio-rheumatology. Diagnostics 9(4):217
Tanawuttiwat T, Sager SJ, Hare JM, Myerburg RJ (2013) Myocarditis and ARVC/D: variants or mimics? Hear Rhythm 10(10):1544–1548. https://doi.org/10.1016/j.hrthm.2013.06.008
Patrianakos AP, Protonotarios N, Nyktari E, Pagonidis K, Tsatsopoulou A, Parthenakis FI et al (2012) Arrhythmogenic right ventricular cardiomyopathy/dysplasia and troponin release. Myocarditis or the “hot phase” of the disease? Int J Cardiol. 157(2):e26–e28. https://doi.org/10.1016/j.ijcard.2011.09.017
Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72(24):3158–3176
Francone M, Carbone I, Agati L, Bucciarelli Ducci C, Mangia M, Iacucci I et al (2011) Utility of T2-weighted short-tau inversion recovery (STIR) sequences in cardiac MRI: an overview of clinical applications in ischaemic and non-ischaemic heart disease. Radiol Medica 116(1):32–46
Pieroni M, Dello Russo A, Marzo F, Pelargonio G, Casella M, Bellocci F et al (2009) High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy. Differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. J Am Coll Cardiol. 53(8):681–689. https://doi.org/10.1016/j.jacc.2008.11.017
Mavrogeni SI, Sfikakis PP, Dimitroulas T, Koutsogeorgopoulou L, Markousis-Mavrogenis G, Poulos G et al (2018) Prospects of using cardiovascular magnetic resonance in the identification of arrhythmogenic substrate in autoimmune rheumatic diseases. Rheumatol Int 38(9):1615–1621. https://doi.org/10.1007/s00296-018-4110-5
Seferović PM, Ristić AD, Maksimović R, Simeunović DS, Ristić GG, Radovanović G et al (2006) Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology 45(SUPPL. 4):39–42
Di Cesare E, Battisti S, Di Sibio A, Cipriani P, Giacomelli R, Liakouli V et al (2013) Early assessment of sub-clinical cardiac involvement in systemic sclerosis (SSc) using delayed enhancement cardiac magnetic resonance (CE-MRI). Eur J Radiol 82(6):e268–e273
Giacomelli R, Di Cesare E, Cipriani P, Ruscitti P, Di Sibio A, Liakouli V et al (2017) Pharmacological stress, rest perfusion and delayed enhancement cardiac magnetic resonance identifies very early cardiac involvement in systemic sclerosis patients of recent onset. Int J Rheum Dis 20(9):1247–1260
Karamitsos TD, Arvanitaki A, Karvounis H, Neubauer S, Ferreira VM (2020) Myocardial tissue characterization and fibrosis by imaging. JACC Cardiovasc Imaging 13(5):1221–1234
Vasaiwala SC, Finn C, Delpriore J, Leya F, Gagermeier J, Akar JG et al (2009) Prospective study of cardiac sarcoid mimicking arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol 20(5):473–476
Freed LA, Levy D, Levine R, Larson MG, Evans JC, Fuller DL et al (1999) Prevalence and clinical outcome of mitral-valve prolapse. New Engl J Med 341(1):1–7
Detaint D, Iung B, Lepage L, Messika-Zeitoun D, Baron G, Tornos P et al (2008) Management of asymptomatic patients with severe non-ischaemic mitral regurgitation. Are practices consistent with guidelines? Eur J Cardio-thoracic Surg 34(5):937–942
Basso C, Perazzolo Marra M, Rizzo S, De Lazzari M, Giorgi B, Cipriani A et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation 132(7):556–566
Miller MA, Dukkipati SR, Turagam M, Liao SL, Adams DH, Reddy VY (2018) Arrhythmic mitral valve prolapse: JACC review topic of the week. J Am Coll Cardiol 72(23):2904–2914. https://doi.org/10.1016/j.jacc.2018.09.048
Nordhues BD, Siontis KC, Scott CG, Nkomo VT, Ackerman MJ, Asirvatham SJ et al (2016) Bileaflet mitral valve prolapse and risk of ventricular dysrhythmias and death. J Cardiovasc Electrophysiol 27(4):463–468
Marra MP, Basso C, De Lazzari M, Rizzo S, Cipriani A, Giorgi B et al (2016) Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging 9(8):e005030
Dejgaard LA, Skjølsvik ET, Lie ØH, Ribe M, Stokke MK, Hegbom F et al (2018) The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol 72(14):1600–1609
Fernández-Friera L, Salguero R, Vannini L, Argüelles AF, Arribas F, Solís J. Mechanistic insights of the left ventricle structure and fibrosis in the arrhythmogenic mitral valve prolapse. Glob Cardiol Sci Pract. 2018;2018(1).
Bui AH, Roujol S, Foppa M, Kissinger KV, Goddu B, Hauser TH et al (2017) Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart 103(3):204–209
Pradella S, Grazzini G, Brandani M, Calistri L, Nardi C, Mori F et al (2019) Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol 29(3):1546–1554
Galderisi M, Cardim N, D’Andrea A, Bruder O, Cosyns B, Davin L et al (2015) The multi-modality cardiac imaging approach to the Athleté’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(4):353–353T
Mavrogeni SI, Bacopoulou F, Apostolaki D, Chrousos GP (2018) Sudden cardiac death in athletes and the value of cardiovascular magnetic resonance. Eur J Clin Invest 48(7):0–3
D’Ascenzi F, Pelliccia A, Solari M, Piu P, Loiacono F, Anselmi F et al (2017) Normative reference values of right heart in competitive athletes: a systematic review and meta-analysis. J Am Soc Echocardiogr 30(9):845–858.e2. https://doi.org/10.1016/j.echo.2017.06.013
Luijkx T, Velthuis BK, Prakken NHJ, Cox MGPJ, Bots ML, Mali WPTM et al (2012) Impact of revised Task Force Criteria: distinguishing the athlete’s heart from ARVC/D using cardiac magnetic resonance imaging. Eur J Prev Cardiol 19(4):885–891
Czimbalmos C, Csecs I, Dohy Z, Toth A, Suhai FI, Müssigbrodt A et al (2019) Cardiac magnetic resonance based deformation imaging: role of feature tracking in athletes with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiovasc Imaging 35(3):529–538. https://doi.org/10.1007/s10554-018-1478-y
Bourfiss M, Prakken NHJ, van der Heijden JF, Kamel I, Zimmerman SL, Asselbergs FW et al (2019) Diagnostic Value of Native T1 Mapping in Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Cardiovasc Imaging. 12(8P1):1580–1582
Małek ŁA, Barczuk-Falęcka M, Werys K, Czajkowska A, Mróz A, Witek K et al (2019) Cardiovascular magnetic resonance with parametric mapping in long-term ultra-marathon runners. Eur J Radiol 117(May):89–94
Małek ŁA, Bucciarelli-Ducci C (2019) Myocardial fibrosis in athletes—current perspective. Clin Cardiol 2020:1–7
La Gerche A, Baggish AL, Knuuti J, Prior DL, Sharma S, Heidbuchel H et al (2013) Cardiac imaging and stress testing asymptomatic athletes to identify those at risk of sudden cardiac death. JACC Cardiovasc Imaging 6(9):993–1007
Markowitz SM, Weinsaft JW, Waldman L, Petashnick M, Liu CF, Cheung JW et al (2014) Reappraisal of cardiac magnetic resonance imaging in idiopathic outflow tract arrhythmias. J Cardiovasc Electrophysiol 25(12):1328–1335
Saberniak J, Leren IS, Haland TF, Beitnes JO, Hopp E, Borgquist R et al (2017) Comparison of patients with early-phase arrhythmogenic right ventricular cardiomyopathy and right ventricular outflow tract ventricular tachycardia. Eur Heart J Cardiovasc Imaging 18(1):62–69
Tessa C, Del Meglio J, Ottonelli AG, Diciotti S, Salvatori L, Magnacca M et al (2012) Evaluation of Brugada syndrome by cardiac magnetic resonance. Int J Cardiovasc Imaging 28(8):1961–1970
Gray B, Gnanappa GK, Bagnall RD, Femia G, Yeates L, Ingles J et al (2018) Relations between right ventricular morphology and clinical, electrical and genetic parameters in Brugada Syndrome. PLoS ONE 13(4):1–14
Rudic B, Schimpf R, Veltmann C, Doesch C, Tülümen E, Schoenberg SO et al (2016) Brugada syndrome: clinical presentation and genotype-correlation with magnetic resonance imaging parameters. Europace 18(9):1411–1419
Bastiaenen R, Cox AT, Castelletti S, Wijeyeratne YD, Colbeck N, Pakroo N et al (2017) Late gadolinium enhancement in Brugada syndrome: a marker for subtle underlying cardiomyopathy? Hear Rhythm 14(4):583–589. https://doi.org/10.1016/j.hrthm.2016.12.004