Cardiac ischemia—insights from computational models

Herzschrittmachertherapie + Elektrophysiologie - Tập 29 Số 1 - Trang 48-56 - 2018
Axel Loewe1, Eike M. Wülfers2, Gunnar Seemann2
1Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Medical Center, Computational Modeling Group, Albert-Ludwigs University of Freiburg, Elsässerstr. 2q, 79110, Freiburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arevalo HJ, Boyle PM, Trayanova NA (2016) Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Prog Biophys Mol Biol 121:185–194

Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

Clayton RH, Bernus O, Cherry EM et al (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48

Dutta S, Mincholé A, Quinn TA, Rodriguez B (2017) Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Prog Biophys Mol Biol 129:40–52. https://doi.org/10.1016/j.pbiomolbio.2017.02.007

Dutta S, Mincholé A, Zacur E et al (2016) Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol Biol 120:236–248

Fink M, Niederer SA, Cherry EM et al (2011) Cardiac cell modelling: observations from the heart of the cardiac physiome project. Prog Biophys Mol Biol 104:2–21

Foster DB (2007) Twelve-lead electrocardiography: theory and interpretation. Springer, Berlin

Gemmell P, Burrage K, Rodríguez B, Quinn TA (2016) Rabbit-specific computational modelling of ventricular cell electrophysiology: using populations of models to explore variability in the response to ischemia. Prog Biophys Mol Biol 121:169–184

Hanna G, Trayanova N, Graham, Ukwatta E (2016) Evaluation of a T1 mapping technique for stratifying patient risk: A preliminary study using computer simulations of cardiac electrophysiology. In: 2016 IEEE EMBS Int. Student Conf. IEEE, S 1–4

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 117:500–544

Kahlmann W, Poremba E, Potyagaylo D et al (2017) Modelling of patient-specific Purkinje activation based on measured ECGs. Curr Dir Biomed Eng 3:171

Keller DUJ, Weiss DL, Dössel O, Seemann G (2012) Influence of IKs heterogeneities on the genesis of the T‑wave: a computational evaluation. IEEE Trans Biomed Eng 59:311–322

Li W, Kohl P, Trayanova N (2006) Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm 3:179–186

Loewe A, Schulze WHW, Jiang Y et al (2011) Determination of optimal electrode positions of a wearable ECG monitoring system for detection of myocardial ischemia: A simulation study. Comput Cardiol (2010) 38:741–744

Loewe A, Schulze WHW, Jiang Y et al (2014) ECG-based detection of early myocardial ischemia in a computational model: impact of additional electrodes, optimal placement, and a new feature for ST deviation. Biomed Res Int 530352:1–11

Mayourian J, Cashman TJ, Ceholski DK et al (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121:411–423

Mayourian J, Savizky RM, Sobie EA, Costa KD (2016) Modeling electrophysiological coupling and fusion between human mesenchymal stem cells and cardiomyocytes. Plos Comput Biol 12:e1005014

McDougal AD, Dewey CF (2017) Modeling oxygen requirements in ischemic cardiomyocytes. J Biol Chem 292:11760–11776

Potyagaylo D, Seemann G, Schulze WH, Dossel O (2015) Magnetocardiography did not uncover electrically silent ischemia in an in-silico study case. 2015 Comput. Cardiol. Conf. IEEE, pp 1145–1148

Quinn TA, Kohl P (2013) Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res 97:601–611

Schwab BC, Seemann G, Lasher RA et al (2013) Quantitative analysis of cardiac tissue including fibroblasts using three-dimensional confocal microscopy and image reconstruction: towards a basis for electrophysiological modeling. IEEE Trans Med Imaging 32:862–872

Siogkas PK, Rigas G, Exarchos TP et al (2017) Computational estimation of the hemodynamic significance of coronary stenoses in arterial branches deriving from CCTA: A proof-of-concept study. Eng. Med. Biol. Soc. IEEE, pp 1348–1351

Stinstra JG, Shome S, Hopenfeld B, MacLeod RS (2005) Modelling passive cardiac conductivity during ischaemia. Med Biol Eng Comput 43:776–782

ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291:H1088–H1100

Weiss DL, Ifland M, Sachse FB et al (2009) Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomed Tech (Berl) 54:107–125

Wilhelms M, Dössel O, Seemann G (2010) Simulating the impact of the transmural extent of acute ischemia on the electrocardiogram. Comput Cardiol (2010) 37:13–16

Wilhelms M, Dössel O, Seemann G (2011) Comparing simulated electrocardiograms of different stages of acute cardiac ischemia. Lect Notes Comput Sci, vol. 6666., pp 11–19

Wilhelms M, Dössel O, Seemann G (2011) In silico investigation of electrically silent acute cardiac ischemia in the human ventricles. IEEE Trans Biomed Eng 58:2961–2964

Xie Y, Garfinkel A, Camelliti P et al (2009) Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: a computational study. Heart Rhythm 6:1641–1649

Xie Y, Garfinkel A, Weiss JN, Qu Z (2009) Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. Am J Physiol Heart Circ Physiol 297:H775–H784