Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India

Sedimentology - Tập 50 Số 5 - Trang 921-952 - 2003
Ganqing Jiang1, Nicholas Christie-Blick2, Alan J. Kaufman3, D. M. Banerjee4, Vibhuti Rai5
1Department of Earth Sciences, University of California, Riverside, CA 92521, USA (E-mail: [email protected])
2Department of Earth and Environmental Sciences and Lamont‐Doherty Earth Observatory, Columbia University, Palisades, NY 10964‐8000, USA
3Department of Geology, University of Maryland, College Park, MD 20742-4211, USA
4Dept. of Geology, University of Delhi, Delhi 110007, India
5Department of Geology, Lucknow University, Lucknow, 226007, India

Tóm tắt

Abstract The Infra Krol Formation and overlying Krol Group constitute a thick (< 2 km), carbonate‐rich succession of terminal Proterozoic age that crops out in a series of doubly plunging synclines in the Lesser Himalaya of northern India. The rocks include 18 carbonate and siliciclastic facies, which are grouped into eight facies associations: (1) deep subtidal; (2) shallow subtidal; (3) sand shoal; (4) peritidal carbonate complex; (5) lagoonal; (6) peritidal siliciclastic–carbonate; (7) incised valley fill; and (8) karstic fill. The stromatolite‐rich, peritidal complex appears to have occupied a location seaward of a broad lagoon, an arrangement reminiscent of many Phanerozoic and Proterozoic platforms. Growth of this complex was accretionary to progradational, in response to changes in siliciclastic influx from the south‐eastern side of the lagoon. Metre‐scale cycles tend to be laterally discontinuous, and are interpreted as mainly autogenic. Variations in the number of both sets of cycles and component metre‐scale cycles across the platform may result from differential subsidence of the interpreted passive margin. Apparently non‐cyclic intervals with shallow‐water features may indicate facies migration that was limited compared with the dimensions of facies belts. Correlation of these facies associations in a sequence stratigraphic framework suggests that the Infra Krol Formation and Krol Group represent a north‐ to north‐west‐facing platform with a morphology that evolved from a siliciclastic ramp, to carbonate ramp, to peritidal rimmed shelf and, finally, to open shelf. This interpretation differs significantly from the published scheme of a basin centred on the Lesser Himalaya, with virtually the entire Infra Krol–Krol succession representing sedimentation in a persistent tidal‐flat environment. This study provides a detailed Neoproterozoic depositional history of northern India from rift basin to passive margin, and predicts that genetically related Neoproterozoic deposits, if they are present in the High Himalaya, are composed mainly of slope/basinal facies characterized by fine‐grained siliciclastic and detrital carbonate rocks, lithologically different from those of the Lesser Himalaya.

Từ khóa


Tài liệu tham khảo

Auden J.B., 1934, The geology of the Krol belt, Geol. Surv. India Rec, 0, 357

Bathhurst R.G.C., 1975, Carbonate Sediments and Their Diagenesis, 658

10.1016/0037-0738(87)90002-9

Bhargava O.N., 1979, Lithostratigraphic classification of the Blaini, Infra‐Krol, Krol and Tal formations: a review, J. Geol. Soc. India, 20, 7

Bhargava A.K., 1981, Some paleoenvironmental observations on the Infra Krol Formation, Lesser Himalaya, J. Paleontol. Soc. India, 25, 26

Bhatt D.K., 1991, The Precambrian‐Cambrian transition interval in Himalaya with special reference to small shelly fossils – a review of current status of work, J. Palaeontol. Soc. India, 36, 109

Bhattacharya A.R., 1982, Geology of Vindhyanchal, 200

Bhattacharyya A., 1971, Petrology and origin of the Krol Sandstone around Solan, Himachal Pradesh, J. Geol. Soc. India, 12, 368

Bhattacharya S.C., 1971, Geological evolution of the Krol Belt in Simla Hills, H.P, Himalayan Geol, 1, 178

10.1144/jgs.157.1.61

10.1016/0037-0738(93)90042-4

10.2307/3514674

10.1007/978-1-4612-3748-8_1

Cloyd K.C., 1990, Tidal channel, levee, and crevasse‐splay deposits from a Cambrian tidal channel system: a new mechanism to produce shallowing‐upward sequences, J. Sed. Petrol, 60, 73

Crowell J.C., 1999, Pre‐Mesozoic ice ages: their bearing on understanding the climate system, Geol. Soc. Am. Mem, 192, 45

10.1130/0091-7613(1985)13<607:EAATDO>2.0.CO;2

10.1306/D4267A69-2B26-11D7-8648000102C1865D

10.1016/S0037-0738(01)00087-2

Elrick M., 1995, Cyclostratigraphy of Middle Devonian carbonates of the eastern Great Basin, J. Sed. Res, 65, 61

10.2307/3515490

Fisher A.G., 1988, Airborne silts and dune‐derived sands in the Permian of the Delaware Basin, J. Sed. Petrol, 58, 637

10.1016/0037-0738(91)90005-X

10.1130/0016-7606(1990)102<0535:DCCSLC>2.3.CO;2

Goldhammer R.K., 1993, The origin of high‐frequency platform carbonate cycles and third‐order sequences (Lower Ordovician El Paso Gp, west Texas): constraints from outcrop data and stratigraphic modeling, J. Sed. Petrol, 63, 318

Grotzinger J.P., 1986, Evolution of Early Proterozoic passive‐margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada, J. Sed. Petrol, 56, 831

10.1130/0016-7606(1986)97<1208:CAPDRP>2.0.CO;2

Grotzinger J.P.(1989a)Construction of early Proterozoic (1.9 GA) barrier reef complex Rocknest Platform Northwest Territories. In:Reefs – Canada and Adjacent Areas(EdsH.Geldsetzer N.P.JamesandG.Tebbut) Can. Soc. Petrol. Geol. Mem. 13 30–37.

Grotzinger J.P.(1989b)Facies and evolution of Precambrian depositional systems: emergence of the modern platform archetype. In:Controls on Carbonate Platform and Basin Development(EdsP.D.Crevello J.L.Wilson J.F.SargandJ.F.Read) SEPM Spec. Publ. 44 79–106.

Grotzinger J.P.andJames N.P.(2000)Precambrian carbonates: evolution of understanding. In:Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World(EdsJ.P.GrotzingerandN.P.James) SEPM Spec. Publ. 67 3–20.

Hardie L.A., 1986, Carbonate depositional environments, Part 3: Tidal flats, Colorado School Mines Q., 81, 1

10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2

Hoffman P.F.(1989)Pethei reef complex (1.9 Ga) Great Slave Lake N.W.T. In:Reefs – Canada and Adjacent Areas(EdsH.Geldsetzer N.P.JamesandG.Tebbutt) Can. Soc. Petrol. Geol. Mem. 13 38–48.

10.1126/science.281.5381.1342

10.2110/jsr.68.684

10.1306/120301720524

10.1007/978-1-4612-3748-8_12

10.1073/pnas.94.13.6600

10.1130/0091-7613(1998)026<1059:TOFNG>2.3.CO;2

10.1007/978-1-4612-3748-8_9

10.1130/0016-7606(1971)82[2585:ASMFDP]2.0.CO;2

10.1017/S0016756800015995

10.1016/0037-0738(87)90015-7

MacDonald A.C., 1998, Stochastic modeling of incised valley geometries, AAPG Bull, 82, 1156

Mathur V.K., 1989, First record of Ediacaran fossils from the Krol Formation, Nainital syncline, J. Geol. Soc. India, 34, 245

Mathur V.K., 1990, Ediacaran medusoids from Cambrian Tal Formation, Himachal Lesser Himalaya and the Krol Formation, Naini Tal syncline, J. Geol. Soc. India, 36, 74

Montañez I.P.andOsleger D.A.(1993)Parasequence stacking patterns third‐order accommodation events and sequence stratigraphy of Middle to Upper Cambrian platform carbonates Bonanza King Formation southern Great basin. In:Carbonate Sequence Stratigraphy – Recent Developments and Applications(EdsR.B.LoucksandJ.F.Sarg) AAPG Mem. 57 305–325.

10.1130/0016-7606(1992)104<0872:ECOEDO>2.3.CO;2

Mustard P.S., 1990, Paleokarst breccias, calcretes, silcretes and fault breccias at the base of Upper Proterozoic ‘Windermere’ strata, northern Canadian Cordillera, J. Sed. Petrol, 60, 525

10.1130/0016-7606(2000)112<435:REHTEA>2.0.CO;2

10.1046/j.1365-3091.1998.00171.x

Nio S.D.andYang Chang‐Shu(1991)Diagnostic attributes of clastic tidal deposits: a review. In:Clastic Tidal Sedimentology(EdsD.G.Smith G.E.Reinson B.A.ZaitlinandR.A.Rahmani) Can. Soc. Petrol. Geol. Mem. 16 3–28.

10.1046/j.1365-3091.1996.d01-13.x

Osleger D.A., 1991, Relation of eustasy to stacking patterns of meter scale carbonate cycles, Late Cambrian, USA, J. Sed. Petrol, 61, 1225

10.1016/S0743-9547(98)00060-9

Pelechaty S.M.andGrotzinger J.P.(1988)Stromatolites bioherms of a 1.9 Ga foreland basin carbonate ramp Beechey Formation Kilohigok Basin Northwest Territories. In:Reefs – Canada and Adjacent Areas(EdsH.Geldsetzer N.P.JamesandG.Tebbut) Can. Soc. Petrol. Geol. Mem. 13 93–104.

Pelechaty S.M., 1991, Dolomitized Middle Proterozoic calcretes, Bathurst Inlet, northwest Territories, Canada, J. Sed. Petrol, 61, 988

10.1086/629851

Perlmutter M.A., 1998, Sequence Stratigraphy – Concepts and Applications, 141

10.1111/j.1365-2117.1993.tb00058.x

10.1130/0016-7606(1998)110<1010:SASOTK>2.3.CO;2

10.1111/j.1365-3091.1986.tb00540.x

Pratt B.R., 1992, Facies Models: Response to Sea Level Changes, 303

Read J.F., 1985, Carbonate platform facies models, AAPG Bull, 69, 1

10.1016/0037-0738(74)90027-X

10.1111/j.1365-3091.1993.tb01343.x

Sami T.T., 1994, Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, Upper Pethei Group, northwest Canada, J. Sed. Res, 64, 111

Saxena M.N., 1981, Metamorphic Tectonites of the Himalaya, 303

10.1016/0037-0738(94)90005-1

10.2110/jsr.69.909

10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2

Shanker R., 1992, Precambrian–Cambrian sequence in Krol Belt and additional Ediacaran fossils, Geophytology, 22, 27

Shanker R., 1989, Stratigraphy and sedimentation in Himalaya, a reappraisal, Geol. Surv. India Spec. Publ, 26, 1

Shanker R., 1993, Stratigraphy of Blaini, Infra Krol and Tal succession, Krol Belt, Lesser Himalaya, Indian J. Petrol. Geol, 2, 99

Shanker R., 1997, Additional Ediacaran biota from the Krol Group, Lesser Himalaya, India and their significance, Geosci. J, 18, 79

Shinn E.A.(1986)Modern carbonate tidal flats: their diagnostic features. In:Carbonate Depositional Environments. Part 3. Tidal Flats(EdsL.A.HardieandE.A.Shinn) Colorado School Mines Q. 81 7–35.

Singh I.B., 1980, Sedimentological evolution of the Krol Belt sediments, Himalayan Geol, 8, 657

10.1016/0301-9268(80)90038-8

Singh I.B., 1980, Some observations on the depositional environment of the Krol Formation in Nainital area, Himalayan Geol, 8, 633

Singh I.B., 1983, Fauna and biogenic structures in Krol‐Tal succession (Vendian–Early Cambrian), Lesser Himalaya and a biostratigraphic and palaeontological significance, J. Paleontol. Soc. India, 28, 67

Singh I.B., 1980, Some observations on the sedimentology of the Krol succession of Mussoorie area, Uttar Pradesh, J. Geol. Soc. India, 21, 232

10.1016/S0301-9268(02)00107-9

10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2

10.1111/j.1365-3091.1989.tb00610.x

10.1111/j.1365-3091.1989.tb00821.x

Tangri A.K., 1982, Palaeoenvironment of Blaini Formation, Lesser Himalaya, J. Paleontol. Soc. India, 27, 35

Tiwari M., 1994, Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance, J. Himalayan Geol, 5, 193

10.2113/gsecongeo.89.3.467

10.1016/S0301-9268(01)00139-5

10.1130/0016-7606(1970)81[451:SSTPFO]2.0.CO;2

Virdi N.S., 1991, Sedimentation and tectonics of the Krol belt – control of basement structures on the basin configuration, J. Himalayan Geol, 2, 141

10.2113/gsecongeo.89.5.1183

Wright V.P., 1982, The recognition and interpretation of paleokarsts: two examples from the Lower Carboniferous of south Wales, J. Sed. Petrol, 52, 83

10.1016/0012-8252(94)90002-7

Zaitlin B.A. Dalrymple R.W.andBoyd R.(1994)The stratigraphic organization of incised‐valley systems associated with relative sea‐level change. In:Incised Valley Systems: Origin and Sedimentary Sequences(EdsR.Dalrymple R.BoydandB.Zaitlin) SEPM Spec. Publ. 51 45–60.