Carbon storage by mineral carbonation and industrial applications of CO2

Materials Science for Energy Technologies - Tập 3 - Trang 494-500 - 2020
Neeraj1, Shashikant Yadav2
1Haryana School of Business, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125 001, India
2Department of Chemical Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab 144 011, India

Tài liệu tham khảo

Dey, 2019, Materials progress in the control of CO and CO2 emission at ambient conditions: an overview, Mater. Sci. Energy Technol., 2, 607 Hajilary, 2020, Materials science for energy technologies CO2 emission reduction by zero flaring startup in gas refinery, Mater. Sci. Energy Technol., 3, 218 Sanna, 2014, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev., 43, 8049, 10.1039/C4CS00035H Brierley, 2009, Impacts of climate change on marine organisms and ecosystems, Curr. Biol., 19, R602, 10.1016/j.cub.2009.05.046 Hajilary, 2018, Evaluation of socio-economic factors on CO2 emissions in Iran: factorial design and multivariable methods, J. Clean. Prod., 189, 108, 10.1016/j.jclepro.2018.04.067 Sohaib, 2020, Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures, Sep. Purif. Technol., 241, 10.1016/j.seppur.2020.116677 Saran, 2017, Climate change: mitigation strategyby various CO2 sequestration methods, Int. J. Adv. Res. Sci. Eng., 6, 299 Marini, 2007, Geological sequestration of carbon dioxide – thermodynamics, kinetics, and reaction path modeling, Dev. Geochem., 11, 27 Kareya, 2020, CO2 sequestration by hybrid integrative photosynthesis (CO2-SHIP): a green initiative for multi-product biorefineries, Mater. Sci. Energy Technol., 3, 420 Oloye, 2020, Synthesis and evaluation of a nanocomposite hydroxy sodalite/ceramic (HS/ceramic) membrane for pre-combustion CO2 capture: characterization and permeation test during CO2/H2 separation, Mater. Sci. Energy Technol., 3, 225 Bao, 2018, Greenhouses for CO2 sequestration from atmosphere, Carbon Resour. Convers., 1, 183, 10.1016/j.crcon.2018.08.002 Pastero, 2019, CO2 capture and sequestration in stable Ca-oxalate, via Ca-ascorbate promoted green reaction, Sci. Total Environ., 666, 1232, 10.1016/j.scitotenv.2019.02.114 Sundarrajan, 2019, A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system, J. Clean. Prod., 210, 445, 10.1016/j.jclepro.2018.11.010 Soong, 2014, CO2 sequestration in saline formation, Aerosol Air Qual. Res., 14, 522, 10.4209/aaqr.2013.06.0195 Fang, 2010, Characteristics of CO2 sequestration in saline aquifers, Pet. Sci., 7, 83, 10.1007/s12182-010-0010-3 W.J.J. Huijgen, R.N.J. Comans, Carbon dioxide sequestration by mineral carbonation: Literature review update 2003–2004, Energy research Centre of the Netherlands, Petten, The Netherlands, Report number: ECN-C–03-022, (2005) 1–37. J. Sipilä S. Teir R. Zevenhoven Carbon dioxide sequestration by mineral carbonation Literature review update 2005–2007, Faculty of Technology, Heat Engineering Laboratory, Abo Akademi University Finland 2008 VT 2008-1 Lackner, 2002, Carbonate chemistry for sequestering fossil carbon, Annu. Rev. Energy Environ., 27, 193, 10.1146/annurev.energy.27.122001.083433 Hitch, 2010, Revaluing mine waste rock for carbon capture and storage, Int. J. Mining, Reclam. Environ., 24, 64, 10.1080/17480930902843102 W.J.J. Huijgen R.N.J. Comans Carbon dioxide sequestration by mineral carbonation, literature review Energy research Centre of the Netherlands (ECN) 2003 ECN-C-03-016 J. Sipilä, S. Teir, R. Zevenhoven, Carbon dioxide sequestration by mineral carbonation Literature review update 2005–2007, 2008. doi:10.1080/00908310600628263. O’Connor, 2002, Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products, Miner. Metall. Process., 19, 95 Yadav, 2017, Dissolution of steel slags in aqueous media, Environ. Sci. Pollut. Res., 24, 16305, 10.1007/s11356-017-9036-z Yadav, 2017, Experimental study of dissolution of minerals and CO2 sequestration in steel slag, Waste Manag., 64, 348, 10.1016/j.wasman.2017.03.032 Saran, 2018, CO2 sequestration by mineral carbonation: a review, Glob. NEST J., 20, 497, 10.30955/gnj.002597 S. Yadav, A. Mehra, Mathematical modelling and experimental study of carbonation of wollastonite in the aqueous media, J. CO2 Util. 31 (2019) 181–191. doi:10.1016/j.jcou.2019.03.013. Arora, 2019, Separation and sequestration of CO2 in geological formations, Mater. Sci. Energy Technol., 2, 647 Yadav, 2017, Utilization of alkaline industrial wastes for CO2 sequestration, Int. J. Adv. Technol. Eng. Sci., 5, 524 Saran, 2019, Operations management and systems engineering, Springer Singapore Li, 2018, Insight into interactions of olivine-scCO2 -water system at 140 C and 15 MPa during CO2 mineral sequestration, Geosci. Front. J., 9 Liu, 2020, Computers and geosciences a tutorial review of reactive transport modeling and risk assessment for geologic CO2 sequestration, Comput. Geosci., 127, 1, 10.1016/j.cageo.2019.02.007 Larisa, 2018, CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T, J. CO2 Util., 24, 164, 10.1016/j.jcou.2018.01.001 Qin, 2019, Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation, Waste Manag., 89, 254, 10.1016/j.wasman.2019.04.018 Teir, 2007, Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production, Energy, 32, 528, 10.1016/j.energy.2006.06.023 W.J.J. Huijgen, R.N.J. Comans, Mineral CO2 sequestration by carbonation of industrial residues, Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands, 2005. doi: ECN-C-05-074. Teir, 2007, Dissolution of natural serpentinite in mineral and organic acids, Int. J. Miner. Process., 83, 36, 10.1016/j.minpro.2007.04.001 Wang, 2019, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration, Miner. Eng., 131, 185, 10.1016/j.mineng.2018.11.024 Rahmani, 2020, An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO2 sequestration, J. CO2 Util., 35, 265, 10.1016/j.jcou.2019.10.005 Yin, 2020, Integrated anaerobic digestion and CO2 sequestration for energy recovery from waste activated sludge by calcium addition, Timing Matters Energy Motie, 2020, CO2 sequestration using carbonated water injection in depleted naturally fractured reservoirs: a simulation study, Int. J. Greenh. Gas Control., 93, 10.1016/j.ijggc.2019.102893 Zhang, 2020, In-situ mineral CO2 sequestration in a methane producing microbial electrolysis cell treating sludge hydrolysate, J. Hazard. Mater., 394, 10.1016/j.jhazmat.2020.122519 Olajire, 2013, A review of mineral carbonation technology in sequestration of CO2, J. Pet. Sci. Eng., 109, 364, 10.1016/j.petrol.2013.03.013 Lackner, 1997, Progress on binding CO2 in mineral substrates, Energy Convers. Manag., 38, S259, 10.1016/S0196-8904(96)00279-8 Weissbart, 2000, Wollastonite: incongruent dissolution and leached layer formation, Geochim. Cosmochim. Acta, 64, 4007, 10.1016/S0016-7037(00)00475-0 IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge, UK, 2005. doi:10.1021/es200619j. Voigt, 2018, Evaluation and refinement of thermodynamic databases for mineral carbonation, Energy Procedia, 146, 81, 10.1016/j.egypro.2018.07.012 He, 2019, Maximizing CO2 sequestration in cement-bonded fiberboards through carbonation curing, Constr. Build. Mater., 213, 51, 10.1016/j.conbuildmat.2019.04.042 Liu, 2018, CO2 sequestration by direct gas-solid carbonation of fly ash with steam addition, J. Clean. Prod., 178, 98, 10.1016/j.jclepro.2017.12.281 Ji, 2018, Integrated absorption-mineralisation for low-energy CO2 capture and sequestration, Appl. Energy, 225, 356, 10.1016/j.apenergy.2018.04.108 Rahmani, 2018, CO2 sequestration by indirect mineral carbonation of industrial waste red gypsum, J. CO2 Util., 27, 374, 10.1016/j.jcou.2018.08.017 S. Teir, Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags, Department of Energy Technology, Helsinki University of Technology, Finland, 2008. http://lib.tkk.fi/Diss/2008/isbn9789512293537/. Pan, 2012, CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications, Aerosol Air Qual. Res., 12, 770, 10.4209/aaqr.2012.06.0149 Kodama, 2008, Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution, Energy, 33, 776, 10.1016/j.energy.2008.01.005 Lekakh, 2008, Kinetics of aqueous leaching and carbonization of steelmaking slag, Metall. Mater. Trans. B, 39, 125, 10.1007/s11663-007-9112-8 Huijgen, 2005, Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol., 39, 9676, 10.1021/es050795f S. Teir, Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags, 2008. Li, 2007, Accelerated carbonation of municipal solid waste incineration fly ashes, Waste Manag., 27, 1200, 10.1016/j.wasman.2006.06.011 Baciocchi, 2009, Comparison of different reaction routes for carbonation of APC residues, Energy Procedia, 1, 4851, 10.1016/j.egypro.2009.02.313 R. Baciocchi, A. Polettini, R. Pomi, V. Prigiobbe, V.N. Von Zedwitz, A. Steinfeld, CO2 Sequestration by Direct Gas-Solid Carbonation of Air Pollution Control (APC) Residues, (2006) 1933–1940. W. O’Connor, D. Dahlin, G. Rush, S. Gerdemann, L.R. Penner, D. Nilsen, Aqueous Mineral Carbonation, Mineral Availability, Pretreatment, Reaction Parametrics, and Process Studies, National Energy Technology Laboratory, Office of Fossil Energy, US, 2005. Bobicki, 2012, Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci., 38, 302, 10.1016/j.pecs.2011.11.002 Bonenfant, 2008, CO2 sequestration by aqueous red mud carbonation at ambient pressure and temperature, Ind. Eng. Chem. Res., 47, 7617, 10.1021/ie7017228 Yadav, 2010, Sequestration of carbon dioxide (CO2) using red mud, J. Hazard. Mater., 176, 1044, 10.1016/j.jhazmat.2009.11.146 Sahu, 2010, Neutralization of red mud using CO2 sequestration cycle, J. Hazard. Mater., 179, 28, 10.1016/j.jhazmat.2010.02.052 Wilson, 2009, Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the clinton creek and cassiar chrysotile deposits, Canada, Econ. Geol., 104, 95, 10.2113/gsecongeo.104.1.95 Power, 2010, Bioleaching of ultramafic tailings by Acidithiobacillus spp. for CO2 sequestration, Environ. Sci. Technol., 44, 456, 10.1021/es900986n Larachi, 2010, Fixation of CO2 by chrysotile in low-pressure dry and moist carbonation: ex-situ and in-situ characterizations, Geochim. Cosmochim. Acta, 74, 3051, 10.1016/j.gca.2010.03.007 Li, 2018, Mechanical activation of magnesium silicates for mineral carbonation, a review, Miner. Eng., 128, 69, 10.1016/j.mineng.2018.08.034 E. Benhelal, M. Imran, M.S. Rayson, J. Prigge, S. Molloy, F. Brent, A. Cote, M. Stockenhuber, E.M. Kennedy, Study on mineral carbonation of heat activated lizardite at pilot and laboratory scale, J. CO2 Util. J. 26 (2018) 230–238. doi:10.1016/j.jcou.2018.05.015. Rashid, 2019, Development of Concurrent grinding for application in aqueous mineral carbonation, J. Clean. Prod., 212, 151, 10.1016/j.jclepro.2018.11.189 Farhang, 2019, Dissolution of heat activated serpentine for CO2 sequestration: the effect of silica precipitation at different temperature and pH values, J. CO2 Util., 30, 123, 10.1016/j.jcou.2019.01.009 Benhelal, 2019, Direct aqueous carbonation of heat activated serpentine: discovery of undesirable side reactions reducing process efficiency, Appl. Energy, 242, 1369, 10.1016/j.apenergy.2019.03.170 Teir, 2007, Production of magnesium carbonates from serpentinite for long-term storage of CO2, Int. J. Miner. Process., 85, 1, 10.1016/j.minpro.2007.08.007 Sanna, 2013, Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration, Miner. Eng., 49, 135, 10.1016/j.mineng.2013.05.018 Chang, 2018, Effects of mineralogical changes in BOFS during carbonation on pH and Ca and Si leaching, Constr. Build. Mater., 192, 584, 10.1016/j.conbuildmat.2018.10.057 Dilmore, 2008, Sequestration of CO2 in mixtures of bauxite residue and saline wastewater, Energy Fuels, 22, 343, 10.1021/ef7003943 Fernández Bertos, 2004, Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2, Green Chem., 6, 428, 10.1039/B401872A Sanna, 2012, Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective, Appl. Energy, 99, 545, 10.1016/j.apenergy.2012.06.049 Hjelmar, 1996, Disposal strategies for municipal solid waste incineration residues, J. Hazard. Mater., 47, 345, 10.1016/0304-3894(95)00111-5 Jonckbloedt, 1998, Olivine dissolution in sulphuric acid at elevated temperatures – implications for the olivine process, an alternative waste acid neutralizing process, J. Geochem. Explor., 62, 337, 10.1016/S0375-6742(98)00002-8 Maroto-Valer, 2005, Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration, Fuel Process. Technol., 86, 1627, 10.1016/j.fuproc.2005.01.017 Kwon, 2011, Factors affecting the direct mineralization of CO2 with olivine, J. Environ. Sci., 23, 1233, 10.1016/S1001-0742(10)60555-4 Rostami, 2003, Alkali ash material: a novel fly ash-based cement, Environ. Sci. Technol., 37, 3454, 10.1021/es026317b Ahmaruzzaman, 2010, A review on the utilization of fly ash, Prog. Energy Combust. Sci., 36, 327, 10.1016/j.pecs.2009.11.003 van Zomeren, 2011, Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure, Waste Manag., 31, 2236, 10.1016/j.wasman.2011.05.022 Santos, 2012, Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment, Chem. Eng. J., 203, 239, 10.1016/j.cej.2012.06.155 Quina, 2008, Treatment and use of air pollution control residues from MSW incineration: an overview, Waste Manag., 28, 2097, 10.1016/j.wasman.2007.08.030 Teir, 2009, Fixation of carbon dioxide by producing hydromagnesite from serpentinite, Appl. Energy., 86, 214, 10.1016/j.apenergy.2008.03.013 Sanna, 2013, Carbon dioxide capture and storage by pH swing aqueous mineralisation using a mixture of ammonium salts and antigorite source, Fuel, 114, 153, 10.1016/j.fuel.2012.08.014 Fagerlund, 2012, Kinetics studies on wet and dry gas–solid carbonation of MgO and Mg(OH)2 for CO2 sequestration, RSC Adv., 2, 10380, 10.1039/c2ra21428h Teir, 2005, Production of precipitated calcium carbonate from calcium silicates and carbon dioxide, Energy Convers. Manag., 46, 2954, 10.1016/j.enconman.2005.02.009 Wang, 2011, Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts, ChemSusChem, 4, 1291, 10.1002/cssc.201000441 Voormeij, 2004, Geological, ocean, and mineral CO2 sequestration options: a technical review, Geosci. Canada, 31, 11 IPCC, Climate Change 2007 Synthesis Report, 2007. doi:10.1256/004316502320517344. IEA, Energy Technology Analysis: Prospects for CO2 Capture and Storage, (2004) 249. doi:10.1016/B978-1-85617-710-8.00010-8. Aresta, 1996, Carbon dioxide utilisation in the chemical industry, ACS Div. Fuel Chem. Prepr., 41, 1341 Inui, 1996, Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts, Catal. Today, 29, 329, 10.1016/0920-5861(95)00300-2 Inui, 2002, Effective conversion of CO2 to valuable compounds by using multi-functional catalysts, Fuel Energy Abstr., 43, 32, 10.1016/S0140-6701(02)80323-X Paustian, 1998, CO2 mitigation by agriculture: an overview, Clim. Change, 40, 135, 10.1023/A:1005347017157 Park, 2005 Melis, 1998, Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells, J. Appl. Phycol., 10, 515, 10.1023/A:1008076231267 Larson, 1993, Technology for electricity and fuels from biomass, Annu. Rev. Energy Environ., 18, 567, 10.1146/annurev.eg.18.110193.003031 CO2 Emissions, (2020). https://www.worldometers.info/co2-emissions/. Richa Shukla R., Ranjith P., Haque A., Choi X., A review of studies on CO2 sequestration and caprock integrity, Fuel, 89 (2010) 2651–2664, doi:10.1016/j.fuel.2010.05.012 Sanna, 2012, Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials, Energy Environ. Sci., 5, 7781, 10.1039/c2ee03455g