Carbon nanotubes: synthesis, properties and engineering applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bethune DS et al (1993) Cobalt- catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607
Ni W et al (2006) Fabrication and properties of carbon nanotubes and poly (vinyl alcohol) composites. J Macromol Sci B 45:659–664
Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758
Chavan R et al (2012) A review: carbon nanotubes. Int J Pharm Sci 13:125–134
Eatmadi A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393
Sharma R et al (2015) Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng 2:1095017
Lan Y et al (2011) Physics and applications of aligned carbon nanotubes. Adv Phys. https://doi.org/10.1080/00018732.2011.599963
Hone J et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A. https://doi.org/10.1007/s003390201277
Meyyappan M et al (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Tech 12:205–216
Ibrahim SK (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett. https://doi.org/10.5714/CL.2013.14.3.131
Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489
Hirlekar R et al (2009) Carbon nanotubes and its applications: a review. Asian J Pharm Clin Res 2(4):17–27
Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater. https://doi.org/10.1021/cm102406h
Nessim GD (2010) Properties, synthesis and growth mechanism of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale. https://doi.org/10.1039/b9nr00427k
Jariwala D (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltics and sensing. Chem Soc Rev. https://doi.org/10.1039/c2cs35335k
Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B. https://doi.org/10.1016/j.mseb.2005.02.046
Aqel A et al (2012) A Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem. https://doi.org/10.1016/j.arabjc.2010.08.022
Thostenson ET et al (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912
Kuzmany H et al (2004) Functionalization of carbon nanotubes. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2003.08.018
Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.08.013
Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol. https://doi.org/10.1122/1.2736424
Bhatt A et al (2016) Carbon nanotubes: a promising carrier for drug delivery and targeting. Nano Architecton Smart Deliv Drug Target. https://doi.org/10.1016/B978-0-323-47347-7.00017-3
Dresselhaus MS et al (2005) Raman spectroscopy of carbon nanotubes. Phys Rep. https://doi.org/10.1016/j.physrep.2004.10.006
Khare R, Bose S (2005) Carbon nanotube based composites—a review. J Miner Mater Charact Eng 4:31–46
Lekawa-Raus A et al (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater. https://doi.org/10.1002/adfm.201303716
Bernholc J et al (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375. https://doi.org/10.1146/annurev.matsci.32.112601.134925
Tang QY et al (2010) R Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethyacetamide. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2224
Ibrahim SK (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett. https://doi.org/10.5714/cl.2013.14.3.131
Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930
Yu MF et al (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:552–555
Singh R, Gupta SM (2016) Introduction to nanotechnology. OXFORD University Press, India
Ghasempour R, Narei H (2018) CNT basics and characteristics. In: Rafiee R (ed) Carbon nanotube-reinforced polymers. Elsevier, Amsterdam, pp 1–24
Maultzsch J (2004). Vibrational properties of carbon nanotubes and graphite. Doctoral thesis. https://doi.org/10.14279/depositonce-967
Hur J, Stuart SJ (2017) Raman intensity and vibrational modes of armchair CNTs. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2017.04.078
Hodkiewicz J (2010) Characterizing carbon materials with Raman spectroscopy. Thermo Fisher Scientific, Madison
Costa S et al (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci Pol 26(2):433–441
Lei XW et al (2011) Radial breathing mode of carbon nanotubes subjected to axial pressure. Nanoscale Res Lett. https://doi.org/10.1186/1556-276x-6-492
Moura LG et al (2017) The double-resonance Raman spectra in single-chirality (n, m) carbon nanotubes. Carbon. https://doi.org/10.1016/j.carbon.2017.02.048
Andersson CH (2011) Chemistry of carbon nanostructures. Uppsala University, Physical Organic Chemistry, Uppsala
Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—a review. J Fluor. https://doi.org/10.1016/j.jfluchem.2017.06.018
Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859
Melchionna M, Prato M (2013) Functionalizing Carbon Nanotubes: An Indispensable Step towards Applications. ECS J Solid State Sci Technol. https://doi.org/10.1149/2.0083jss
Ewels CP, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2005.304
Terrones M et al (2008) Doped carbon nanotubes: synthesis, characterization and applications. Appl Phys 111:531–566
Souza Filho AG, Terrones M (2009) Properties and applications of doped carbon nanotubes. B-C-N nanotubes and related nanostructures. Springer, New York, pp 223–269
Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. https://doi.org/10.1039/c3ee41444b
Mittal V (2011) Surface modification of nanotube fillers. Carbon nanotubes surface modifications: an overview, 1st edn. Wiley, New York, pp 1–23
Jeon IY et al (2011) Carbon nanotubes-polymer nanocomposite. In: Yellampali (ed) Functionalization of carbon nanotubes, pp 91–110
Wepasnick KA et al (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 10:10. https://doi.org/10.1007/s00216-009-3332-5
Khalid P et al (2016) Toxicology of carbon nanotubes—a review. Int J Appl Eng Res 11(1):148–157
Bellucci S (2009) Carbon nanotubes toxicity. In: Bellucci S (ed) Nanoparticles and nanodevices in biological applications. The INFN lectures - vol I, vol 4. Springer, Berlin, Heidelberg, pp 47–67
Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33(7):893–902
Kaushik BK, Majumder MK (2015) Carbon nanotube based VLSI interconnects analysis and design. Chapter-2 carbon nanotube: properties and applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2047-3_2
Charlier JC et al (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53(16):108–113
He H, Pan B (2009) Studies on structural effects in carbon nanotubes. Front Phys China. https://doi.org/10.1007/s11467-009-0021-y
Sharma K et al (2012) Effect of multiple stone-wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Proced Eng 38:3373–3380
Ebbesen TW, Takada T (1995) Topological and sp3 defect structures in nanotubes. Carbon 33(7):973–978
Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150
Farhat S, Scott CD (2006) Review of the arc process modeling for fullerene and nanotube production. J Nanosci Nanotechnol 6:1189–1210
Ando Y (2010) Carbon nanotube: the inside story. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2017
Krzystof K et al (2010) Carbon and oxide nanostructures, advanced structured materials. In: Yahya N (ed) Synthesis of carbon nanostructures by CVD method. Springer, Berlin, pp 23–49. https://doi.org/10.1007/8611_2010_12
Gang X et al (2007) Analysis of the carbon nano-structures formation in liquid arcing. Plasma Sci Technol 9(6):770–773
Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res General Sci 2(4):660–677
Arepalli S (2004) Laser Ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2004.072
Scott CD et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A. https://doi.org/10.1007/s003390100761
Arepalli S et al (2001) Production and measurements of individual single-wall nanotubes and small ropes of carbon. Appl Phys Lett. https://doi.org/10.1063/1.1352659
Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 10:10. https://doi.org/10.1080/20014091104189
Braidy N et al (2002) A Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92
Ding RG et al (2001) A Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2001.012
Yudasaka M et al (1999) Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd:YAG laser ablation. J Phys Chem B. https://doi.org/10.1021/jp990072g
Walker PL et al (1959) Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysis I. Properties of carbon formed. J Phys Chem 63:133–140
Jose Yacaman M et al (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett. https://doi.org/10.1063/1.108857
Tempel H et al (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys. https://doi.org/10.1016/j.matchemphyw01.-029
Popov VN (2004) Carbon nanotubes: properties and applications. Mater Sci Eng. https://doi.org/10.1016/j.mser.3003.10.001
Yang F et al (2017) Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano. https://doi.org/10.1021/1csnano.6b0689
Ding EX et al (2017) Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale. https://doi.org/10.1039/c7nr05554d
Zhou W, Ding L, Liu J (2009) Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. https://doi.org/10.1007/s12274-009-9068-x
Nasibulin AG et al (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.12.040
Ahmad S et al (2005) Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon. https://doi.org/10.1016/j.carbon.2019.04.026
Agrez A et al (2010) Catalytic CVD Synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials. https://doi.org/10.3390/ma3114871
Flahaut E et al (1999) Synthesis of single-walled carbon nanotubes using binary Fe Co, Ni/alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem Phys Lett 300:236–242
Li J et al (1999) Highly ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369
Andrews R et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474
Liao Y et al (2018) Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv Mater Interfaces. https://doi.org/10.1002/admi.201801209
Hussain A et al (2018) Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale. https://doi.org/10.1039/c8nr00716k
Okada T et al (2019) Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2018.12.018
Eveleens CA, Stephan I, Page AJ (2019) How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth? Carbon. https://doi.org/10.1016/j.carbon.2019.02.027
Eveleens CA, Page AJ (2019) Catalyst and etchant dependent mechanisms of single-walled carbon nanotube nucleation during chemical vapor deposition. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b12276
Romanenko AI et al (2018) temperature dependence of electrical conductivity and thermoelectric power of transparent SWCNT films obtained by aerosol CVD synthesis. Phys Status Solidi B 10:10. https://doi.org/10.1002/pssb.201700642
Chen M et al (2002) Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J Mater Sci 37:3561–3567
Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A Mater Sci Process 74(3):387–391. https://doi.org/10.1007/s003390101186
Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. https://doi.org/10.1126/science.282.5391.1105
Teo KBK et al (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204–211
Boskovic BO et al (2002) Large-area synthesis of carbon nanofibers at room temperature. Nat Mater. https://doi.org/10.1038/nmat755
Minea TM et al (2004) Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1781352
Hofmann S et al (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1589187
Hofmann S et al (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett. https://doi.org/10.1063/1.1630167
Hussain S et al (2018) Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.02.112
Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758
Yasuda A, Kawase N, Mizutani W (2002) Carbon nanotube formation mechanism based on in situ TEM observation. J Phys Chem B 106:13294–13298. https://doi.org/10.1021/jp020977l
Saito Y et al (1995) Extrusion of single-wall carbon nanotubes via formation of small particles condensed near arc evaporation source. Chem Phys Lett 236:419–426
Kurt R, Bonard JM, Karimi A (2001) Structure and field emission properties of decorated CyN nanotubes tuned by diameter variations. Thin Solid Films 398–399:193–198
Wang X et al (2002) Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J Phys Chem B. https://doi.org/10.1021/jp013007r
Saito Y, Uemura S, Hamaguchi K (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys 37:L346–L348
Zhu W et al (1999) Large current density from carbon nanotubes field emitters. Appl Phys Lett. https://doi.org/10.1063/1.124541
Bonard JM, Stockli T, Noury O, Chatelain A (2001) Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl Phys Lett. https://doi.org/10.1063/1.1367903
Chung KJ et al (2008) Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils. J Nanomater. https://doi.org/10.1155/2015/373549
Murakami H, Hirakawa M, Tanaka C, Yamakawa H (2000) Field emission from well-aligned, patterned, carbon nanotube emitters. Appl Phys Lett. https://doi.org/10.1063/1.126164
Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169–182
Ericson LM et al (2004) Macroscopic, neat, single-walled Carbon nanotube fibers. Science. https://doi.org/10.1126/science.1101398
Surgie H et al (2001) Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett. https://doi.org/10.1063/1.1367278
Hwang RJ et al (2012) Carbon nanotube electron emitter for X-ray imaging. Materials. https://doi.org/10.3390/ma5112353
Hasobe T, Fukuzumi S, Kamat PV (2006) Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem Int Ed. https://doi.org/10.1002/anie.200502815
Kempa K et al (2003) Photonics crystals based on periodic arrays of aligned carbon nanotubes. Nano Letters. https://doi.org/10.1021/n10258271
Wang J et al (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc. https://doi.org/10.1021/ja031723w
Wang X et al (2005) Improved super lensing in two-dimensional photonic crystals with a basis. Appl Phys Lett. https://doi.org/10.1063/1.1863413
Kempa K et al (2007) Carbon nanotubes as optical antennae. Adv Mater. https://doi.org/10.1002/adma.200601187
Cui K, Maruyama S (2016) Carbon nanotubes silicon solar cells. IEEE Nanotechnol Mag. https://doi.org/10.1109/mnano.2015.2506318
Wang F et al (2014) Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics. https://doi.org/10.1021/ph400133k
Li Z et al (2013) Solar cells with graphene and carbon nanotubes on silicon. J Exp Nanosci. https://doi.org/10.1080/17458080.2011.572191
Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route towards applications. Science 10:10. https://doi.org/10.1126/science.1060928
Gooding JJ et al (2003) Protien electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc. https://doi.org/10.1021/ja035722f
Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. https://doi.org/10.1021/n1005521z
Tu Y, Lin Y, Yantasee W, Ren Z (2005) Carbon nanaotubes based nanoelectrode arrays: Fabrication, evaluation and application in voltammetric analysis. Electroanalysis. https://doi.org/10.1002/elan.200403122
Tans SJ, Verscheren ARM, Cees Dekker (1998) Room-temperature transistor based on a single carbon nanotube. Nature 383:49–52
Martel S et al (1998) Single- and multi-wall carbon nanotubes field-effect transistors. Appl Phys Lett 10(1063/1):122477
Douglas KR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed. https://doi.org/10.1002/anie.200704488
Katz HE (2004) Chemically sensitive field-effect transistors and chemiresistors: new materials and device structures. Electroanalysis. https://doi.org/10.1002/elan.200403071
Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev. https://doi.org/10.1039/b515473c
Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotubes-based gas sensors. Nanotechnology. https://doi.org/10.1088/0957-4484/19/33/332001
Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens. https://doi.org/10.1155/2009/493904
Cantalini C et al (2004) Carbon nanotubes as new materials for gas sensing applications. J Eur Ceram Soc. https://doi.org/10.1016/s0955-2219(03)00441-2
Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174
Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett. https://doi.org/10.1021/n1034064u
Villalpando-P’aez F et al (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 10:10. https://doi.org/10.1016/j.cplett.2004.01.052
Dag S et al (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B. https://doi.org/10.1103/physrevb.72.155404
Kong J et al (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386
Olsen RA et al (2004) Adosrption and diffusion on a stepped surface: atomic hydrogen on Pt (211). J Chem Phys. https://doi.org/10.1063/1.1755664
Davis JJ et al (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282
Chen RJ et al (2001) Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. https://doi.org/10.1021/ja010172b
Wang J et al (2003) Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J Am Chem Soc. https://doi.org/10.1021/ja028951v
Brinda GC et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349
Yu Y et al (2009) Assembly of multi-functional nanocomponents on periodic nanotube array for biosensors. Micro Nano Lett. https://doi.org/10.1049/mnl.20080054
Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun. https://doi.org/10.1016/s1388-2481(03)00076-6
Yu X et al (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5:408–411
Walters DA et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett. https://doi.org/10.1063/1.124185
Wong EW et al (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975
Treacy JMM et al (1996) Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381:678–680
Yu MF et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640
Bazbouz MB, Stylios GK (2008) Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur Polymer J. https://doi.org/10.1126/science.1104276
Zhang M et al (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. https://doi.org/10.1126/science.1104276
Wu Z (2004) Transparent, conductive carbon nanotube films. Science. https://doi.org/10.1126/science.1101243
Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K, Zhao Y, Fan S (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. https://doi.org/10.1021/n10723073
Postma HW, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science. https://doi.org/10.1126/science.1061797
Prakash P et al (2018) A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.03.021
Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem. https://doi.org/10.1007/s00216-005-3400-4
Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev. https://doi.org/10.1021/cr020730k
Dai H, Wong EW, Liebert CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526
Tang H et al (2004) High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon. https://doi.org/10.1016/j.carbon.2003.10.023
Largeot C et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. https://doi.org/10.1021/ja7106178
Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. https://doi.org/10.1039/b813846j
Zhang H et al (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun. https://doi.org/10.1016/j.elecom.2008.05.007
Zhong DY et al (2001) Lithium storage in polymerized carbon nitride nanobells. Appl Phys Lett. https://doi.org/10.1063/1.1419034
Baughman RH et al (1999) Carbon nanotube actuators. Science. https://doi.org/10.1126/science.284.5418.1340
Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 31(14):2521–2540. https://doi.org/10.1002/jssc.200800182
Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924. https://doi.org/10.1016/j.chroma.2009.09.073
Lu H, Chen G (2011) Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. Anal Methods 3(3):488. https://doi.org/10.1039/c0ay00489h
Moliner-Martínez Y, Barrios M, Cárdenas S, Valcárcel M (2008) Comparative study of carbon nanotubes and C60 fullerenes as pseudostationary phases in electrokinetic chromatography. J Chromatogr A 1194(1):128–133. https://doi.org/10.1016/j.chroma.2008.04.034
ALOthman ZA, Wabaidur SM (2018) Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.05.012
Fadhillahanafi NM, Leon KY, Risby MS (2013) Stability and thermal conductivity characteristics of carbon nanotube based nanofluids. Int J Automot Mech Eng (IJAME). https://doi.org/10.1016/j.arabjc.2018.05.012
Kumaresan V, Velraj R (2012) Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta 545:180–186. https://doi.org/10.1016/j.tca.2012.07.017
Harish S, Ishikawa K, Einarsson E, Aikawa S, Chiashi S, Shiomi J, Maruyama S (2012) Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transf 55(13–14):3885–3890. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.001
Ghozatloo A, Rashidi AM, Shariaty-Niasar M (2014) Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids. Int Commun Heat Mass Transf 54:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.013
Walvekar R, Siddiqui MK, Ong S, Ismail AF (2015) Application of CNT nanofluids in a turbulent flow heat exchanger. J Exp Nanosci 11(1):1–17. https://doi.org/10.1080/17458080.2015.1015461
Venkatesan SP, Hemanandh J (2018) Experimental investigation on convective heat transfer coefficient of water/ethylene glycol-carbon nanotube nanofluids. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1472649
Sharma B, Sharma SK, Gupta SM, Kumar A (2018) Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. Arab J Sci Eng 10:10. https://doi.org/10.1007/s13369-018-3345-5
Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212. https://doi.org/10.1016/j.expthermflusci.2016.06.029
Sharma SK, Gupta SM (2018) Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications. Mater Res Express 5(5):055511. https://doi.org/10.1088/2053-1591/aac579
Babita Sharma S K, Gupta SM, Kumar A (2018) A effect of surfactant on CNT dispersion in polar media and thermal conductivity of prepared CNT nanofluids. ARPN J Eng Appl Sci 13(4):1202–1211