Carbon nanotubes: synthesis, properties and engineering applications

Carbon Letters - Tập 29 Số 5 - Trang 419-447 - 2019
Shipra Mital Gupta1, S. K. Sharma2
1USBAS, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
2USCT, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dai H (2003) Carbon nanotubes: synthesis, integration and properties acc. Chem Res 35:1035–1044

Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

Bethune DS et al (1993) Cobalt- catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

Esumi K et al (1995) Chemical treatment of carbon nanotubes. Carbon 34(2):279–281

Ni W et al (2006) Fabrication and properties of carbon nanotubes and poly (vinyl alcohol) composites. J Macromol Sci B 45:659–664

Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

Prasek J et al (2011) Methods for carbon nanotubes synthesis-review. J Mater Chem 21:15872–15884

Chavan R et al (2012) A review: carbon nanotubes. Int J Pharm Sci 13:125–134

Eatmadi A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9:393

Sharma R et al (2015) Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics. Cogent Eng 2:1095017

Lan Y et al (2011) Physics and applications of aligned carbon nanotubes. Adv Phys. https://doi.org/10.1080/00018732.2011.599963

Hone J et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A. https://doi.org/10.1007/s003390201277

Meyyappan M et al (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Tech 12:205–216

Ibrahim SK (2013) Carbon nanotubes–properties and applications: a review. Carbon Lett. https://doi.org/10.5714/CL.2013.14.3.131

Ajayan PM, Zhou Z (2001) Applications of Carbon nanotubes. Appl Phys 80:391–425

Robertson J (2004) Realistic applications of CNTs. Mater Today 7:46–52

Trojanowicz M (2006) Analytical applications of carbon nanotubes: a review. Trends Anal Chem 25(5):480–489

Hirlekar R et al (2009) Carbon nanotubes and its applications: a review. Asian J Pharm Clin Res 2(4):17–27

Schnorr JM, Swager TM (2010) Emerging applications of carbon nanotubes. Chem Mater. https://doi.org/10.1021/cm102406h

Liu C, Cheng HM (2013) Carbon nanotubes: controlled growth and application. Mater Today 16:19–28

Nessim GD (2010) Properties, synthesis and growth mechanism of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale. https://doi.org/10.1039/b9nr00427k

Jariwala D (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltics and sensing. Chem Soc Rev. https://doi.org/10.1039/c2cs35335k

Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B. https://doi.org/10.1016/j.mseb.2005.02.046

Aqel A et al (2012) A Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab J Chem. https://doi.org/10.1016/j.arabjc.2010.08.022

Thostenson ET et al (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

Kuzmany H et al (2004) Functionalization of carbon nanotubes. Synthetic Metals. https://doi.org/10.1016/j.synthmet.2003.08.018

Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.08.013

Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol. https://doi.org/10.1122/1.2736424

Bhatt A et al (2016) Carbon nanotubes: a promising carrier for drug delivery and targeting. Nano Architecton Smart Deliv Drug Target. https://doi.org/10.1016/B978-0-323-47347-7.00017-3

Dresselhaus MS et al (2005) Raman spectroscopy of carbon nanotubes. Phys Rep. https://doi.org/10.1016/j.physrep.2004.10.006

Khare R, Bose S (2005) Carbon nanotube based composites—a review. J Miner Mater Charact Eng 4:31–46

Lekawa-Raus A et al (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater. https://doi.org/10.1002/adfm.201303716

Bernholc J et al (2002) Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 32:347–375. https://doi.org/10.1146/annurev.matsci.32.112601.134925

Tang QY et al (2010) R Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethyacetamide. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2224

Ibrahim SK (2013) Carbon nanotubes-properties and applications: a review. Carbon Lett. https://doi.org/10.5714/cl.2013.14.3.131

Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33(7):925–930

Eastman JA et al (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

Yu MF et al (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:552–555

Jishi RA et al (1993) Phonon modes in carbon nanotubes. Chem Phys Lett 209:77–82

Singh R, Gupta SM (2016) Introduction to nanotechnology. OXFORD University Press, India

Hiura H et al (1993) Raman studies of carbon nanotubes. Chem Phys Lett 202:509–512

Ghasempour R, Narei H (2018) CNT basics and characteristics. In: Rafiee R (ed) Carbon nanotube-reinforced polymers. Elsevier, Amsterdam, pp 1–24

Maultzsch J (2004). Vibrational properties of carbon nanotubes and graphite. Doctoral thesis. https://doi.org/10.14279/depositonce-967

Hur J, Stuart SJ (2017) Raman intensity and vibrational modes of armchair CNTs. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2017.04.078

Hodkiewicz J (2010) Characterizing carbon materials with Raman spectroscopy. Thermo Fisher Scientific, Madison

Costa S et al (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci Pol 26(2):433–441

Lei XW et al (2011) Radial breathing mode of carbon nanotubes subjected to axial pressure. Nanoscale Res Lett. https://doi.org/10.1186/1556-276x-6-492

Moura LG et al (2017) The double-resonance Raman spectra in single-chirality (n, m) carbon nanotubes. Carbon. https://doi.org/10.1016/j.carbon.2017.02.048

Andersson CH (2011) Chemistry of carbon nanostructures. Uppsala University, Physical Organic Chemistry, Uppsala

Tasis D et al (2006) Chemistry of carbon nanotubes. Chem Rev. https://doi.org/10.1021/cr050569o

Adamska M, Narkiewicz U (2017) Fluorination of carbon nanotubes—a review. J Fluor. https://doi.org/10.1016/j.jfluchem.2017.06.018

Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859

Melchionna M, Prato M (2013) Functionalizing Carbon Nanotubes: An Indispensable Step towards Applications. ECS J Solid State Sci Technol. https://doi.org/10.1149/2.0083jss

Ewels CP, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2005.304

Terrones M et al (2008) Doped carbon nanotubes: synthesis, characterization and applications. Appl Phys 111:531–566

Souza Filho AG, Terrones M (2009) Properties and applications of doped carbon nanotubes. B-C-N nanotubes and related nanostructures. Springer, New York, pp 223–269

Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci. https://doi.org/10.1039/c3ee41444b

Mittal V (2011) Surface modification of nanotube fillers. Carbon nanotubes surface modifications: an overview, 1st edn. Wiley, New York, pp 1–23

Jeon IY et al (2011) Carbon nanotubes-polymer nanocomposite. In: Yellampali (ed) Functionalization of carbon nanotubes, pp 91–110

Wepasnick KA et al (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 10:10. https://doi.org/10.1007/s00216-009-3332-5

Khalid P et al (2016) Toxicology of carbon nanotubes—a review. Int J Appl Eng Res 11(1):148–157

Bellucci S (2009) Carbon nanotubes toxicity. In: Bellucci S (ed) Nanoparticles and nanodevices in biological applications. The INFN lectures - vol I, vol 4. Springer, Berlin, Heidelberg, pp 47–67

Kiang CH et al (1995) Carbon nanotubes with single layer walls. Carbon 33(7):903–914

Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33(7):893–902

Kaushik BK, Majumder MK (2015) Carbon nanotube based VLSI interconnects analysis and design. Chapter-2 carbon nanotube: properties and applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2047-3_2

Charlier JC et al (1996) Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys Rev B 53(16):108–113

He H, Pan B (2009) Studies on structural effects in carbon nanotubes. Front Phys China. https://doi.org/10.1007/s11467-009-0021-y

Sharma K et al (2012) Effect of multiple stone-wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Proced Eng 38:3373–3380

Ebbesen TW, Takada T (1995) Topological and sp3 defect structures in nanotubes. Carbon 33(7):973–978

Kroto HW et al (1993) Buckminster fullerene. Nature 318:162–163

Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150

Purohit R et al (2014) Carbon nanotubes and their growth methods. Proced Mater Sci 6:716–728

Farhat S, Scott CD (2006) Review of the arc process modeling for fullerene and nanotube production. J Nanosci Nanotechnol 6:1189–1210

Ando Y (2010) Carbon nanotube: the inside story. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2010.2017

Krzystof K et al (2010) Carbon and oxide nanostructures, advanced structured materials. In: Yahya N (ed) Synthesis of carbon nanostructures by CVD method. Springer, Berlin, pp 23–49. https://doi.org/10.1007/8611_2010_12

Gang X et al (2007) Analysis of the carbon nano-structures formation in liquid arcing. Plasma Sci Technol 9(6):770–773

Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res General Sci 2(4):660–677

Arepalli S (2004) Laser Ablation process for single-walled carbon nanotube production. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2004.072

Scott CD et al (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A. https://doi.org/10.1007/s003390100761

Arepalli S et al (2001) Production and measurements of individual single-wall nanotubes and small ropes of carbon. Appl Phys Lett. https://doi.org/10.1063/1.1352659

Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 10:10. https://doi.org/10.1080/20014091104189

Braidy N et al (2002) A Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92

Ding RG et al (2001) A Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2001.012

Yudasaka M et al (1999) Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd:YAG laser ablation. J Phys Chem B. https://doi.org/10.1021/jp990072g

Walker PL et al (1959) Carbon formation from carbon monoxide-hydrogen mixtures over iron catalysis I. Properties of carbon formed. J Phys Chem 63:133–140

Jose Yacaman M et al (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett. https://doi.org/10.1063/1.108857

Tempel H et al (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys. https://doi.org/10.1016/j.matchemphyw01.-029

Popov VN (2004) Carbon nanotubes: properties and applications. Mater Sci Eng. https://doi.org/10.1016/j.mser.3003.10.001

Yang F et al (2017) Water-assisted preparation of high-purity semiconducting (14,4) carbon nanotubes. ACS Nano. https://doi.org/10.1021/1csnano.6b0689

Ding EX et al (2017) Highly conductive and transparent single-walled carbon nanotube thin films from ethanol by floating catalyst chemical vapor deposition. Nanoscale. https://doi.org/10.1039/c7nr05554d

Zhou W, Ding L, Liu J (2009) Role of catalysts in the surface synthesis of single-walled carbon nanotubes. Nano Res. https://doi.org/10.1007/s12274-009-9068-x

Nasibulin AG et al (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett. https://doi.org/10.1016/j.cplett.2004.12.040

Ahmad S et al (2005) Systematic investigation of the catalyst composition effects on single-walled carbon nanotubes synthesis in floating-catalyst CVD. Carbon. https://doi.org/10.1016/j.carbon.2019.04.026

Agrez A et al (2010) Catalytic CVD Synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials. https://doi.org/10.3390/ma3114871

Flahaut E et al (1999) Synthesis of single-walled carbon nanotubes using binary Fe Co, Ni/alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chem Phys Lett 300:236–242

Li WZ et al (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

Terrones M et al (1997) Controlled production of aligned-nanotube bundles. Nature 388:52–55

Pan ZW et al (1998) Very long carbon nanotubes. Nature 394:631–632

Li J et al (1999) Highly ordered carbon nanotube arrays for electronics applications. Appl Phys Lett 75:367–369

Andrews R et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474

Wei BQ et al (2002) Organized assembly of carbon nanotubes. Nature 416:495–496

Liao Y et al (2018) Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv Mater Interfaces. https://doi.org/10.1002/admi.201801209

Hussain A et al (2018) Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale. https://doi.org/10.1039/c8nr00716k

Okada T et al (2019) Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2018.12.018

Eveleens CA, Stephan I, Page AJ (2019) How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth? Carbon. https://doi.org/10.1016/j.carbon.2019.02.027

Eveleens CA, Page AJ (2019) Catalyst and etchant dependent mechanisms of single-walled carbon nanotube nucleation during chemical vapor deposition. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b12276

Romanenko AI et al (2018) temperature dependence of electrical conductivity and thermoelectric power of transparent SWCNT films obtained by aerosol CVD synthesis. Phys Status Solidi B 10:10. https://doi.org/10.1002/pssb.201700642

Chen M et al (2002) Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J Mater Sci 37:3561–3567

Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A Mater Sci Process 74(3):387–391. https://doi.org/10.1007/s003390101186

Ren ZF et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science. https://doi.org/10.1126/science.282.5391.1105

Teo KBK et al (2003) Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow? Nanotechnology 14:204–211

Boskovic BO et al (2002) Large-area synthesis of carbon nanofibers at room temperature. Nat Mater. https://doi.org/10.1038/nmat755

Minea TM et al (2004) Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1781352

Hofmann S et al (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett. https://doi.org/10.1063/1.1589187

Hofmann S et al (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett. https://doi.org/10.1063/1.1630167

Hussain S et al (2018) Plasma synthesis of polyaniline enrobed carbon nanotubes for electrochemical applications. Electrochim Acta. https://doi.org/10.1016/j.electacta.2018.02.112

Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

Yasuda A, Kawase N, Mizutani W (2002) Carbon nanotube formation mechanism based on in situ TEM observation. J Phys Chem B 106:13294–13298. https://doi.org/10.1021/jp020977l

Saito Y et al (1995) Extrusion of single-wall carbon nanotubes via formation of small particles condensed near arc evaporation source. Chem Phys Lett 236:419–426

Kurt R, Bonard JM, Karimi A (2001) Structure and field emission properties of decorated CyN nanotubes tuned by diameter variations. Thin Solid Films 398–399:193–198

Wang X et al (2002) Controllable growth, structure, and low field emission of well-aligned CNx nanotubes. J Phys Chem B. https://doi.org/10.1021/jp013007r

Saito Y, Uemura S, Hamaguchi K (1998) Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys 37:L346–L348

Zhu W et al (1999) Large current density from carbon nanotubes field emitters. Appl Phys Lett. https://doi.org/10.1063/1.124541

Bonard JM, Stockli T, Noury O, Chatelain A (2001) Field emission from cylindrical carbon nanotube cathodes: possibilities for luminescent tubes. Appl Phys Lett. https://doi.org/10.1063/1.1367903

Chung KJ et al (2008) Improvement of lighting uniformity and phosphor life in field emission lamps using carbon nanocoils. J Nanomater. https://doi.org/10.1155/2015/373549

Murakami H, Hirakawa M, Tanaka C, Yamakawa H (2000) Field emission from well-aligned, patterned, carbon nanotube emitters. Appl Phys Lett. https://doi.org/10.1063/1.126164

Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169–182

Ericson LM et al (2004) Macroscopic, neat, single-walled Carbon nanotube fibers. Science. https://doi.org/10.1126/science.1101398

Surgie H et al (2001) Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett. https://doi.org/10.1063/1.1367278

Hwang RJ et al (2012) Carbon nanotube electron emitter for X-ray imaging. Materials. https://doi.org/10.3390/ma5112353

Teo KBK et al (2005) Carbon nanotubes as cold cathodes. Nature. https://doi.org/10.1038/437968a

Hasobe T, Fukuzumi S, Kamat PV (2006) Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew Chem Int Ed. https://doi.org/10.1002/anie.200502815

Kempa K et al (2003) Photonics crystals based on periodic arrays of aligned carbon nanotubes. Nano Letters. https://doi.org/10.1021/n10258271

Wang J et al (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc. https://doi.org/10.1021/ja031723w

Wang X et al (2005) Improved super lensing in two-dimensional photonic crystals with a basis. Appl Phys Lett. https://doi.org/10.1063/1.1863413

Kempa K et al (2007) Carbon nanotubes as optical antennae. Adv Mater. https://doi.org/10.1002/adma.200601187

Cui K, Maruyama S (2016) Carbon nanotubes silicon solar cells. IEEE Nanotechnol Mag. https://doi.org/10.1109/mnano.2015.2506318

Wang F et al (2014) Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics. https://doi.org/10.1021/ph400133k

Li Z et al (2013) Solar cells with graphene and carbon nanotubes on silicon. J Exp Nanosci. https://doi.org/10.1080/17458080.2011.572191

Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route towards applications. Science 10:10. https://doi.org/10.1126/science.1060928

Gooding JJ et al (2003) Protien electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc. https://doi.org/10.1021/ja035722f

Nugent JM, Santhanam KSV, Rubio A, Ajayan PM (2001) Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. https://doi.org/10.1021/n1005521z

Tu Y, Lin Y, Yantasee W, Ren Z (2005) Carbon nanaotubes based nanoelectrode arrays: Fabrication, evaluation and application in voltammetric analysis. Electroanalysis. https://doi.org/10.1002/elan.200403122

Tans SJ, Verscheren ARM, Cees Dekker (1998) Room-temperature transistor based on a single carbon nanotube. Nature 383:49–52

Martel S et al (1998) Single- and multi-wall carbon nanotubes field-effect transistors. Appl Phys Lett 10(1063/1):122477

Kong J et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

Douglas KR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed. https://doi.org/10.1002/anie.200704488

Katz HE (2004) Chemically sensitive field-effect transistors and chemiresistors: new materials and device structures. Electroanalysis. https://doi.org/10.1002/elan.200403071

Snow ES, Perkins FK, Robinson JA (2006) Chemical vapor detection using single-walled carbon nanotubes. Chem Soc Rev. https://doi.org/10.1039/b515473c

Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotubes-based gas sensors. Nanotechnology. https://doi.org/10.1088/0957-4484/19/33/332001

Wang Y, Yeow JTW (2009) A review of carbon nanotubes-based gas sensors. J Sens. https://doi.org/10.1155/2009/493904

Cantalini C et al (2004) Carbon nanotubes as new materials for gas sensing applications. J Eur Ceram Soc. https://doi.org/10.1016/s0955-2219(03)00441-2

Modi A, Koratkar N, Lass E, Wei B, Ajayan PM (2003) Miniaturized gas ionization sensors using carbon nanotubes. Nature 424:171–174

Peng S, Cho K (2003) Ab initio study of doped carbon nanotube sensors. Nano Lett. https://doi.org/10.1021/n1034064u

Villalpando-P’aez F et al (2004) Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem Phys Lett 10:10. https://doi.org/10.1016/j.cplett.2004.01.052

Dag S et al (2005) Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes. Phys Rev B. https://doi.org/10.1103/physrevb.72.155404

Kong J et al (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13(18):1384–1386

Olsen RA et al (2004) Adosrption and diffusion on a stepped surface: atomic hydrogen on Pt (211). J Chem Phys. https://doi.org/10.1063/1.1755664

Davis JJ et al (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282

Chen RJ et al (2001) Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. https://doi.org/10.1021/ja010172b

Thess A et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

Wang J et al (2003) Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J Am Chem Soc. https://doi.org/10.1021/ja028951v

Brinda GC et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349

Yu Y et al (2009) Assembly of multi-functional nanocomponents on periodic nanotube array for biosensors. Micro Nano Lett. https://doi.org/10.1049/mnl.20080054

Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun. https://doi.org/10.1016/s1388-2481(03)00076-6

Yu X et al (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem Commun 5:408–411

Yanga N et al (2015) Carbon nanotube based biosensors. Sens Actuators B 207:690–715

Walters DA et al (1999) Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl Phys Lett. https://doi.org/10.1063/1.124185

Krishnan A et al (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58(20):14013–14019

Wong EW et al (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

Treacy JMM et al (1996) Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

Yu MF et al (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

Bazbouz MB, Stylios GK (2008) Novel mechanism for spinning continuous twisted composite nanofiber yarns. Eur Polymer J. https://doi.org/10.1126/science.1104276

Zhang M et al (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science. https://doi.org/10.1126/science.1104276

Jiang K, Li Q, Fan S (2002) Spinning continuous carbon nanotube yarns. Nature 419:801

Wu Z (2004) Transparent, conductive carbon nanotube films. Science. https://doi.org/10.1126/science.1101243

Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K, Zhao Y, Fan S (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. https://doi.org/10.1021/n10723073

Postma HW, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science. https://doi.org/10.1126/science.1061797

Prakash P et al (2018) A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.03.021

Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem. https://doi.org/10.1007/s00216-005-3400-4

Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev. https://doi.org/10.1021/cr020730k

Dai H, Wong EW, Liebert CM (1996) Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272:523–526

Tang H et al (2004) High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon. https://doi.org/10.1016/j.carbon.2003.10.023

Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

Largeot C et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc. https://doi.org/10.1021/ja7106178

Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev. https://doi.org/10.1039/b813846j

Zhang H et al (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun. https://doi.org/10.1016/j.elecom.2008.05.007

Zhong DY et al (2001) Lithium storage in polymerized carbon nitride nanobells. Appl Phys Lett. https://doi.org/10.1063/1.1419034

Baughman RH et al (1999) Carbon nanotube actuators. Science. https://doi.org/10.1126/science.284.5418.1340

Urban J, Jandera P (2008) Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci 31(14):2521–2540. https://doi.org/10.1002/jssc.200800182

Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217(6):902–924. https://doi.org/10.1016/j.chroma.2009.09.073

Lu H, Chen G (2011) Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. Anal Methods 3(3):488. https://doi.org/10.1039/c0ay00489h

Moliner-Martínez Y, Barrios M, Cárdenas S, Valcárcel M (2008) Comparative study of carbon nanotubes and C60 fullerenes as pseudostationary phases in electrokinetic chromatography. J Chromatogr A 1194(1):128–133. https://doi.org/10.1016/j.chroma.2008.04.034

ALOthman ZA, Wabaidur SM (2018) Application of carbon nanotubes in extraction and chromatographic analysis: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.05.012

Fadhillahanafi NM, Leon KY, Risby MS (2013) Stability and thermal conductivity characteristics of carbon nanotube based nanofluids. Int J Automot Mech Eng (IJAME). https://doi.org/10.1016/j.arabjc.2018.05.012

Kumaresan V, Velraj R (2012) Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta 545:180–186. https://doi.org/10.1016/j.tca.2012.07.017

Harish S, Ishikawa K, Einarsson E, Aikawa S, Chiashi S, Shiomi J, Maruyama S (2012) Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transf 55(13–14):3885–3890. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.001

Ghozatloo A, Rashidi AM, Shariaty-Niasar M (2014) Effects of surface modification on the dispersion and thermal conductivity of CNT/water nanofluids. Int Commun Heat Mass Transf 54:1–7. https://doi.org/10.1016/j.icheatmasstransfer.2014.02.013

Walvekar R, Siddiqui MK, Ong S, Ismail AF (2015) Application of CNT nanofluids in a turbulent flow heat exchanger. J Exp Nanosci 11(1):1–17. https://doi.org/10.1080/17458080.2015.1015461

Venkatesan SP, Hemanandh J (2018) Experimental investigation on convective heat transfer coefficient of water/ethylene glycol-carbon nanotube nanofluids. Int J Ambient Energy. https://doi.org/10.1080/01430750.2018.1472649

Sharma B, Sharma SK, Gupta SM, Kumar A (2018) Modified two-step method to prepare long-term stable CNT nanofluids for heat transfer applications. Arab J Sci Eng 10:10. https://doi.org/10.1007/s13369-018-3345-5

Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Thermal Fluid Sci 79:202–212. https://doi.org/10.1016/j.expthermflusci.2016.06.029

Sharma SK, Gupta SM (2018) Synergic effect of SDBS and GA to prepare stable dispersion of CNT in water for industrial heat transfer applications. Mater Res Express 5(5):055511. https://doi.org/10.1088/2053-1591/aac579

Babita Sharma S K, Gupta SM, Kumar A (2018) A effect of surfactant on CNT dispersion in polar media and thermal conductivity of prepared CNT nanofluids. ARPN J Eng Appl Sci 13(4):1202–1211