Carbon nanotube-based fluorescence sensors

Chun Li1, Gaoquan Shi1
1Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Tài liệu tham khảo

Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0 Ajayan, 1999, Nanotubes from carbon, Chem. Rev., 99, 1787, 10.1021/cr970102g Baughman, 2002, Carbon nanotubes – the route toward applications, Science, 297, 787, 10.1126/science.1060928 Popov, 2004, Carbon nanotubes: properties and application, Mater. Sci. Eng. Rep., 43, 61, 10.1016/j.mser.2003.10.001 Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300 De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453 McCreery, 2008, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 108, 2646, 10.1021/cr068076m Yang, 2010, Carbon nanomaterials in biosensors: should you use nanotubes or graphene?, Angew. Chem. Int. Ed., 49, 2114, 10.1002/anie.200903463 Wang, 2005, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 17, 7, 10.1002/elan.200403113 Besteman, 2003, Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett., 3, 727, 10.1021/nl034139u Katz, 2004, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, ChemPhysChem, 5, 1085 Zhu, 2010, Single-walled carbon nanotube as an effective quencher, Anal. Bioanal. Chem., 396, 73, 10.1007/s00216-009-3192-z Chen, 2011, Single-walled carbon nanotubes as optical materials for biosensing, Nanoscale, 3, 1949, 10.1039/c0nr01014f Huang, 2011, Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications, Trends Anal. Chem., 30, 1109, 10.1016/j.trac.2011.03.014 Boghossian, 2011, Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications, ChemSusChem, 4, 848, 10.1002/cssc.201100070 Britto, 1996, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg., 42, 121, 10.1016/0302-4598(96)05078-7 Tans, 1998, Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49, 10.1038/29954 Kong, 2000, Nanotube molecular wires as chemical sensors, Science, 287, 622, 10.1126/science.287.5453.622 Zhao, 2002, Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification, J. Am. Chem. Soc., 124, 12418, 10.1021/ja027861n O’Connell, 2002, Band gap fluorescence from individual single-walled carbon nanotubes, Science, 297, 593, 10.1126/science.1072631 Bachilo, 2002, Structure-assigned optical spectra of single-walled carbon nanotubes, Science, 298, 2361, 10.1126/science.1078727 Hirsch, 2002, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 41, 1853, 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N Dai, 2002, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res., 35, 1035, 10.1021/ar0101640 Sun, 2002, Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res., 35, 1096, 10.1021/ar010160v Niyogi, 2002, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 35, 1105, 10.1021/ar010155r Balasubramanian, 2005, Chemically functionalized carbon nanotubes, Small, 1, 180, 10.1002/smll.200400118 Banerjee, 2005, Covalent surface chemistry of single-walled carbon nanotubes, Adv. Mater., 17, 17, 10.1002/adma.200401340 Tasis, 2006, Chemistry of carbon nanotubes, Chem. Rev., 106, 1105, 10.1021/cr050569o Britz, 2006, Noncovalent interactions of molecules with single walled carbon nanotubes, Chem. Soc. Rev., 35, 637, 10.1039/b507451g Zhao, 2009, Noncovalent functionalization of single-walled carbon nanotubes, Acc. Chem. Res., 42, 1161, 10.1021/ar900056z Karousis, 2010, Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 110, 5366, 10.1021/cr100018g Kitiyanan, 2000, Controlled production of single-wall carbon nanotubes bycatalytic decomposition of CO on bimetallic Co–Mo catalysts, Chem. Phys. Lett., 317, 497, 10.1016/S0009-2614(99)01379-2 Bachilo, 2003, Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., 125, 11186, 10.1021/ja036622c Nikolaev, 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, 91, 10.1016/S0009-2614(99)01029-5 Diao, 2012, Chirality enriched (12, 1) and (11, 3) single-walled carbon nanotubes for biological imaging, J. Am. Chem. Soc., 134, 16971, 10.1021/ja307966u O’Connell, 2005, Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra, Nat. Mater., 4, 412, 10.1038/nmat1367 Carlson, 2008, Photophysics of individual single-walled carbon nanotubes, Acc. Chem. Res., 41, 235, 10.1021/ar700136v Ghosh, 2010, Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes, Science, 330, 1656, 10.1126/science.1196382 Hiura, 1995, opening and purification of carbon nanotubes in high yields, Adv. Mater., 7, 275, 10.1002/adma.19950070304 Liu, 1998, Fullerene pipes, Science, 280, 1253, 10.1126/science.280.5367.1253 Chen, 1998, Solution properties of single-walled carbon nanotubes, Science, 282, 95, 10.1126/science.282.5386.95 Hamon, 2001, End-group and defect analysis of soluble single walled carbon nanotubes, Chem. Phys. Lett., 347, 8, 10.1016/S0009-2614(01)01035-1 Arnold, 2005, Enrichment of single-walled carbon nanotubes by diameter in density gradients, Nano Lett., 5, 713, 10.1021/nl050133o Arnold, 2006, Sorting carbon nanotubes by electronic structure using density differentiation, Nat. Nanotechnol., 1, 60, 10.1038/nnano.2006.52 Ghosh, 2010, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nat. Nanotechnol., 5, 443, 10.1038/nnano.2010.68 Riggs, 2000, Strong luminescence of solubilized carbon nanotubes, J. Am. Chem. Soc., 122, 5879, 10.1021/ja9942282 Sun, 2001, Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties, Chem. Mater., 13, 2864, 10.1021/cm010069l Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409, 47, 10.1016/j.physrep.2004.10.006 Graupner, 2007, Raman spectroscopy of covalently functionalized single-wall carbon nanotubes, J. Raman Spectrosc., 38, 673, 10.1002/jrs.1694 Simmons, 2006, Effect of ozone oxidation on single-walled carbon nanotubes, J. Phys. Chem. B, 110, 7113, 10.1021/jp0548422 Lafi, 2005, Raman spectroscopy and nitrogen vapour adsorption for the study of structural changes during purification of single-wall carbon nanotubes, Carbon, 43, 1347, 10.1016/j.carbon.2004.12.032 Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187 Bandow, 1997, Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B, 101, 8839, 10.1021/jp972026r Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u Moore, 2003, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett., 3, 1379, 10.1021/nl034524j Han, 2005, Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films, Thin Solid Films, 474, 64, 10.1016/j.tsf.2004.08.011 Ishibashi, 2006, Individual dissolution of single-walled carbon nanotubes in aqueous solutions of steroid or sugar compounds and their Raman and near-IR spectral properties, Chem. Eur. J., 2, 7595, 10.1002/chem.200600326 Haggenmueller, 2008, Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules, Langmuir, 24, 5070, 10.1021/la703008r Sun, 2008, Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential, J. Phys. Chem. C, 112, 10692, 10.1021/jp8021634 Lin, 2010, Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study, J. Phys. Chem. B, 114, 15616, 10.1021/jp1076406 Song, 2005, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide, J. Phys. Chem. B, 109, 21634, 10.1021/jp053077o Kamel, 2012, Aqueous redox reaction of SDS-encased carbon nanotubes with mercuric ions for optical sensing, J. Phys. Chem. C, 116, 15591, 10.1021/jp304063x Chen, 2001, Single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123, 3838, 10.1021/ja010172b Bradley, 2004, Charge transfer from adsorbed proteins, Nano Lett., 4, 253, 10.1021/nl0349855 Star, 2002, Starched carbon nanotubes, Angew. Chem. Int. Ed., 41, 2508, 10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A Numata, 2005, Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1,3-glucans), J. Am. Chem. Soc., 127, 5875, 10.1021/ja044168m Bandyopadhyaya, 2002, Stabilization of individual carbon nanotubes in aqueous solutions, Nano Lett., 2, 25, 10.1021/nl010065f Zheng, 2003, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater., 2, 338, 10.1038/nmat877 Zheng, 2003, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302, 1545, 10.1126/science.1091911 Zheng, 2007, Enrichment of single chirality carbon nanotubes, J. Am. Chem. Soc., 129, 6084, 10.1021/ja071577k Tu, 2009, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature, 460, 250, 10.1038/nature08116 Strano, 2004, Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy, Nano Lett., 4, 543, 10.1021/nl034937k Nakashima, 2003, DNA dissolves single-walled carbon nanotubes in water, Chem. Lett., 32, 456, 10.1246/cl.2003.456 Xu, 2007, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing, J. Phys. Chem. C, 111, 8638, 10.1021/jp0709611 Johnson, 2008, Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics, Nano Lett., 8, 69, 10.1021/nl071909j Xu, 2008, Controllable redox reaction of chemically purified DNA-single walled carbon nanotube hybrids with hydrogen peroxide, J. Am. Chem. Soc., 130, 10054, 10.1021/ja802743h Weisman, 2010, Fluorimetric characterization of single-walled carbon nanotubes, Anal. Bioanal. Chem., 396, 1015, 10.1007/s00216-009-3062-8 Odom, 2000, Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B, 104, 2794, 10.1021/jp993592k Rocha, 2011, Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples, Anal. Chem., 83, 7431, 10.1021/ac2014788 Duque, 2011, New route to fluorescent single-walled carbon nanotube/silica nanocomposites: balancing fluorescence intensity and environmental sensitivity, J. Phys. Chem. C, 115, 15147, 10.1021/jp2012107 Larsen, 2012, Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence, J. Am. Chem. Soc., 134, 12485, 10.1021/ja2114618 Duque, 2013, Mechanism of electrolyte-induced brightening in single-wall carbon nanotubes, J. Am. Chem. Soc., 135, 3379, 10.1021/ja4001757 Satishkumar, 2007, Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing, Nat. Nanotechnol., 2, 560, 10.1038/nnano.2007.261 Lee, 2011, Bright fluorescence from individual single-walled carbon nanotubes, Nano Lett., 11, 1636, 10.1021/nl200077t Zhu, 2012, Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin, Chem. Eur. J., 18, 16556, 10.1002/chem.201201468 Tsyboulski, 2007, Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes, Nano Lett., 7, 3080, 10.1021/nl071561s Carlson, 2007, Fluorescence efficiency of individual carbon nanotubes, Nano Lett., 7, 3698, 10.1021/nl072014+ Qu, 2002, Interactions of functionalized carbon nanotubes with tethered pyrenes in solution, J. Chem. Phys., 117, 8089, 10.1063/1.1510745 Baskaran, 2005, Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer, J. Am. Chem. Soc., 127, 6916, 10.1021/ja0508222 Sandanayaka, 2009, Photoinduced charge separation in ion-paired porphyrin-single-wall carbon nanotube donor-acceptor hybrids, J. Phys. Chem. C, 113, 13425, 10.1021/jp901659p Singh, 2011, Evidence for defect-enhanced photoluminescence quenching of fluorescein by carbon nanotubes, J. Phys. Chem. C, 115, 24067, 10.1021/jp207392d Huang, 2011, Spectroscopic properties of nanotube-chromophore hybrids, ACS Nano, 5, 7767, 10.1021/nn202725g Biju, 2006, Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube, J. Phys. Chem. B, 110, 26068, 10.1021/jp0657890 Frangioni, 2003, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7, 626, 10.1016/j.cbpa.2003.08.007 Barone, 2005, Near-infrared optical sensors based on single-walled carbon nanotubes, Nat. Mater., 4, 86, 10.1038/nmat1276 Barone, 2005, In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages, Anal. Chem., 77, 7556, 10.1021/ac0511997 Barone, 2006, Reversible control of carbon nanotube aggregation for a glucose affinity sensor, Angew. Chem. Int. Ed., 45, 8138, 10.1002/anie.200603138 Yum, 2012, Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose, ACS Nano, 6, 819, 10.1021/nn204323f James, 1996, Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem. Int. Ed., 35, 1910, 10.1002/anie.199619101 James, 2002, Artificial receptors as chemosensors for carbohydrates, Top. Curr. Chem., 218, 159, 10.1007/3-540-45010-6_6 Bull, 2013, Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly, Acc. Chem. Res., 46, 312, 10.1021/ar300130w Mu, 2012, A structure–function relationship for the optical modulation of phenyl boronic acid-grafted, polyethylene glycol-wrapped single-walled carbon nanotubes, J. Am. Chem. Soc., 134, 17620, 10.1021/ja307085h Jin, 2008, Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors, Nano Lett., 8, 4299, 10.1021/nl802010z Heller, 2009, Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes, Nat. Nanotechnol., 4, 114, 10.1038/nnano.2008.369 Kim, 2010, A Luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP, Angew. Chem. Int. Ed., 49, 1456, 10.1002/anie.200906251 Kim, 2009, The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection, Nat. Chem., 1, 473, 10.1038/nchem.332 Chen, 2009, A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes, Chem. Commun., 5006, 10.1039/b910457g Cha, 2011, Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes, ACS Nano, 5, 4236, 10.1021/nn201323h Ahn, 2011, Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis, Nano Lett., 11, 2743, 10.1021/nl201033d Brege, 2009, Fluorescence quenching of single-walled carbon nanotubes with transition-metal ions, J. Phys. Chem. C, 113, 4270, 10.1021/jp808667b Reuel, 2011, Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling, J. Am. Chem. Soc., 133, 17923, 10.1021/ja2074938 Perebeinos, 2004, Scaling of excitons in carbon nanotubes, Phys. Rev. Lett., 92, 257402, 10.1103/PhysRevLett.92.257402 Walsh, 2007, Screening of excitons in single, suspended carbon nanotubes, Nano Lett., 7, 1485, 10.1021/nl070193p Jeng, 2006, Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes, Nano Lett., 3, 371, 10.1021/nl051829k Heller, 2006, Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science, 311, 508, 10.1126/science.1120792 Jeng, 2010, Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence, Small, 6, 40, 10.1002/smll.200900944 Heller, 2011, Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics, Proc. Natl. Acad. Sci. U. S. A., 108, 8544, 10.1073/pnas.1005512108 Gao, 2003, Spontaneous insertion of DNA oligonucleotides into carbon nanotubes, Nano Lett., 3, 471, 10.1021/nl025967a Martin, 2008, Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water, J. Phys. Chem. B, 112, 16076, 10.1021/jp8040567 Zhao, 2007, Simulation of adsorption of DNA on carbon nanotubes, J. Am. Chem. Soc., 129, 10438, 10.1021/ja071844m Yang, 2008, Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization, J. Am. Chem. Soc., 130, 8351, 10.1021/ja800604z Yang, 2008, Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions, Anal. Chem., 80, 7408, 10.1021/ac801118p Zhang, 2010, Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion, Chem. Commun., 46, 1476, 10.1039/b921191h Zhao, 2010, A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions, Chem. Eur. J., 16, 8147, 10.1002/chem.201000306 Yao, 2011, Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(II) in water, Analyst, 136, 764, 10.1039/C0AN00709A Clever, 2007, DNA–metal base pairs, Angew. Chem. Int. Ed., 46, 6226, 10.1002/anie.200701185 Liu, 2011, Nanoprobes: quantitatively detecting the femtogram level of arsenite ions in live cells, ACS Nano, 5, 5560, 10.1021/nn200994r Zhang, 2010, A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay, Biosens. Bioelectron., 25, 1897, 10.1016/j.bios.2010.01.002 Zhang, 2011, One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers, Biosens. Bioelectron., 26, 3505, 10.1016/j.bios.2011.01.035 Guo, 2011, Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A, Talanta, 85, 2517, 10.1016/j.talanta.2011.08.015 Chen, 2012, A novel exonuclease III aided amplification method for sensitive nucleic acid detection based on single walled carbon nanotube induced quenching, Chem. Commun., 48, 269, 10.1039/C1CC16127J Zhen, 2010, Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer, Anal. Chem., 82, 8432, 10.1021/ac100709s Li, 2011, Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection, J. Mater. Chem., 21, 824, 10.1039/C0JM02695F Zhan, 2012, Sensitive spectrofluorometry of cellular prion protein based on the on–off interaction between fluorescent dye-labelled aptamers and multi-walled carbon nanotubes, Analyst, 137, 4968, 10.1039/c2an35924c Wang, 2013, Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis, Anal. Methods, 5, 2947, 10.1039/c3ay40360b Cui, 2008, Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection, Anal. Chem., 80, 7996, 10.1021/ac800992m Tian, 2012, Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes, Anal. Chim. Acta, 723, 83, 10.1016/j.aca.2012.02.030 Liu, 2009, Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes, Chem. Commun., 665, 10.1039/b819526a Ouyang, 2011, New strategy for label-free and time-resolved luminescent assay of protein: conjugate Eu3+ complex and aptamer-wrapped carbon nanotubes, Anal. Chem., 83, 782, 10.1021/ac103087z Guo, 2011, Label-free fluorescent sensor for mercury (II) ion by using carbon nanotubes to reduce background signal, Analyst, 136, 1632, 10.1039/c0an00880j