Carbon nanotube-based fluorescence sensors
Tài liệu tham khảo
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Iijima, 1993, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363, 603, 10.1038/363603a0
Ajayan, 1999, Nanotubes from carbon, Chem. Rev., 99, 1787, 10.1021/cr970102g
Baughman, 2002, Carbon nanotubes – the route toward applications, Science, 297, 787, 10.1126/science.1060928
Popov, 2004, Carbon nanotubes: properties and application, Mater. Sci. Eng. Rep., 43, 61, 10.1016/j.mser.2003.10.001
Avouris, 2007, Carbon-based electronics, Nat. Nanotechnol., 2, 605, 10.1038/nnano.2007.300
De Volder, 2013, Carbon nanotubes: present and future commercial applications, Science, 339, 535, 10.1126/science.1222453
McCreery, 2008, Advanced carbon electrode materials for molecular electrochemistry, Chem. Rev., 108, 2646, 10.1021/cr068076m
Yang, 2010, Carbon nanomaterials in biosensors: should you use nanotubes or graphene?, Angew. Chem. Int. Ed., 49, 2114, 10.1002/anie.200903463
Wang, 2005, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 17, 7, 10.1002/elan.200403113
Besteman, 2003, Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett., 3, 727, 10.1021/nl034139u
Katz, 2004, Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics, ChemPhysChem, 5, 1085
Zhu, 2010, Single-walled carbon nanotube as an effective quencher, Anal. Bioanal. Chem., 396, 73, 10.1007/s00216-009-3192-z
Chen, 2011, Single-walled carbon nanotubes as optical materials for biosensing, Nanoscale, 3, 1949, 10.1039/c0nr01014f
Huang, 2011, Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications, Trends Anal. Chem., 30, 1109, 10.1016/j.trac.2011.03.014
Boghossian, 2011, Near-infrared fluorescent sensors based on single-walled carbon nanotubes for life sciences applications, ChemSusChem, 4, 848, 10.1002/cssc.201100070
Britto, 1996, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg., 42, 121, 10.1016/0302-4598(96)05078-7
Tans, 1998, Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49, 10.1038/29954
Kong, 2000, Nanotube molecular wires as chemical sensors, Science, 287, 622, 10.1126/science.287.5453.622
Zhao, 2002, Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification, J. Am. Chem. Soc., 124, 12418, 10.1021/ja027861n
O’Connell, 2002, Band gap fluorescence from individual single-walled carbon nanotubes, Science, 297, 593, 10.1126/science.1072631
Bachilo, 2002, Structure-assigned optical spectra of single-walled carbon nanotubes, Science, 298, 2361, 10.1126/science.1078727
Hirsch, 2002, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 41, 1853, 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
Dai, 2002, Carbon nanotubes: synthesis, integration, and properties, Acc. Chem. Res., 35, 1035, 10.1021/ar0101640
Sun, 2002, Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res., 35, 1096, 10.1021/ar010160v
Niyogi, 2002, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res., 35, 1105, 10.1021/ar010155r
Balasubramanian, 2005, Chemically functionalized carbon nanotubes, Small, 1, 180, 10.1002/smll.200400118
Banerjee, 2005, Covalent surface chemistry of single-walled carbon nanotubes, Adv. Mater., 17, 17, 10.1002/adma.200401340
Tasis, 2006, Chemistry of carbon nanotubes, Chem. Rev., 106, 1105, 10.1021/cr050569o
Britz, 2006, Noncovalent interactions of molecules with single walled carbon nanotubes, Chem. Soc. Rev., 35, 637, 10.1039/b507451g
Zhao, 2009, Noncovalent functionalization of single-walled carbon nanotubes, Acc. Chem. Res., 42, 1161, 10.1021/ar900056z
Karousis, 2010, Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 110, 5366, 10.1021/cr100018g
Kitiyanan, 2000, Controlled production of single-wall carbon nanotubes bycatalytic decomposition of CO on bimetallic Co–Mo catalysts, Chem. Phys. Lett., 317, 497, 10.1016/S0009-2614(99)01379-2
Bachilo, 2003, Narrow (n, m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst, J. Am. Chem. Soc., 125, 11186, 10.1021/ja036622c
Nikolaev, 1999, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, 91, 10.1016/S0009-2614(99)01029-5
Diao, 2012, Chirality enriched (12, 1) and (11, 3) single-walled carbon nanotubes for biological imaging, J. Am. Chem. Soc., 134, 16971, 10.1021/ja307966u
O’Connell, 2005, Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra, Nat. Mater., 4, 412, 10.1038/nmat1367
Carlson, 2008, Photophysics of individual single-walled carbon nanotubes, Acc. Chem. Res., 41, 235, 10.1021/ar700136v
Ghosh, 2010, Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes, Science, 330, 1656, 10.1126/science.1196382
Hiura, 1995, opening and purification of carbon nanotubes in high yields, Adv. Mater., 7, 275, 10.1002/adma.19950070304
Liu, 1998, Fullerene pipes, Science, 280, 1253, 10.1126/science.280.5367.1253
Chen, 1998, Solution properties of single-walled carbon nanotubes, Science, 282, 95, 10.1126/science.282.5386.95
Hamon, 2001, End-group and defect analysis of soluble single walled carbon nanotubes, Chem. Phys. Lett., 347, 8, 10.1016/S0009-2614(01)01035-1
Arnold, 2005, Enrichment of single-walled carbon nanotubes by diameter in density gradients, Nano Lett., 5, 713, 10.1021/nl050133o
Arnold, 2006, Sorting carbon nanotubes by electronic structure using density differentiation, Nat. Nanotechnol., 1, 60, 10.1038/nnano.2006.52
Ghosh, 2010, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nat. Nanotechnol., 5, 443, 10.1038/nnano.2010.68
Riggs, 2000, Strong luminescence of solubilized carbon nanotubes, J. Am. Chem. Soc., 122, 5879, 10.1021/ja9942282
Sun, 2001, Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties, Chem. Mater., 13, 2864, 10.1021/cm010069l
Dresselhaus, 2005, Raman spectroscopy of carbon nanotubes, Phys. Rep., 409, 47, 10.1016/j.physrep.2004.10.006
Graupner, 2007, Raman spectroscopy of covalently functionalized single-wall carbon nanotubes, J. Raman Spectrosc., 38, 673, 10.1002/jrs.1694
Simmons, 2006, Effect of ozone oxidation on single-walled carbon nanotubes, J. Phys. Chem. B, 110, 7113, 10.1021/jp0548422
Lafi, 2005, Raman spectroscopy and nitrogen vapour adsorption for the study of structural changes during purification of single-wall carbon nanotubes, Carbon, 43, 1347, 10.1016/j.carbon.2004.12.032
Rao, 1997, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes, Science, 275, 187, 10.1126/science.275.5297.187
Bandow, 1997, Purification of single-wall carbon nanotubes by microfiltration, J. Phys. Chem. B, 101, 8839, 10.1021/jp972026r
Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u
Moore, 2003, Individually suspended single-walled carbon nanotubes in various surfactants, Nano Lett., 3, 1379, 10.1021/nl034524j
Han, 2005, Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films, Thin Solid Films, 474, 64, 10.1016/j.tsf.2004.08.011
Ishibashi, 2006, Individual dissolution of single-walled carbon nanotubes in aqueous solutions of steroid or sugar compounds and their Raman and near-IR spectral properties, Chem. Eur. J., 2, 7595, 10.1002/chem.200600326
Haggenmueller, 2008, Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules, Langmuir, 24, 5070, 10.1021/la703008r
Sun, 2008, Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential, J. Phys. Chem. C, 112, 10692, 10.1021/jp8021634
Lin, 2010, Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study, J. Phys. Chem. B, 114, 15616, 10.1021/jp1076406
Song, 2005, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide, J. Phys. Chem. B, 109, 21634, 10.1021/jp053077o
Kamel, 2012, Aqueous redox reaction of SDS-encased carbon nanotubes with mercuric ions for optical sensing, J. Phys. Chem. C, 116, 15591, 10.1021/jp304063x
Chen, 2001, Single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc., 123, 3838, 10.1021/ja010172b
Bradley, 2004, Charge transfer from adsorbed proteins, Nano Lett., 4, 253, 10.1021/nl0349855
Star, 2002, Starched carbon nanotubes, Angew. Chem. Int. Ed., 41, 2508, 10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A
Numata, 2005, Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (β-1,3-glucans), J. Am. Chem. Soc., 127, 5875, 10.1021/ja044168m
Bandyopadhyaya, 2002, Stabilization of individual carbon nanotubes in aqueous solutions, Nano Lett., 2, 25, 10.1021/nl010065f
Zheng, 2003, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater., 2, 338, 10.1038/nmat877
Zheng, 2003, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, 302, 1545, 10.1126/science.1091911
Zheng, 2007, Enrichment of single chirality carbon nanotubes, J. Am. Chem. Soc., 129, 6084, 10.1021/ja071577k
Tu, 2009, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature, 460, 250, 10.1038/nature08116
Strano, 2004, Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy, Nano Lett., 4, 543, 10.1021/nl034937k
Nakashima, 2003, DNA dissolves single-walled carbon nanotubes in water, Chem. Lett., 32, 456, 10.1246/cl.2003.456
Xu, 2007, Double-stranded DNA single-walled carbon nanotube hybrids for optical hydrogen peroxide and glucose sensing, J. Phys. Chem. C, 111, 8638, 10.1021/jp0709611
Johnson, 2008, Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics, Nano Lett., 8, 69, 10.1021/nl071909j
Xu, 2008, Controllable redox reaction of chemically purified DNA-single walled carbon nanotube hybrids with hydrogen peroxide, J. Am. Chem. Soc., 130, 10054, 10.1021/ja802743h
Weisman, 2010, Fluorimetric characterization of single-walled carbon nanotubes, Anal. Bioanal. Chem., 396, 1015, 10.1007/s00216-009-3062-8
Odom, 2000, Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B, 104, 2794, 10.1021/jp993592k
Rocha, 2011, Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples, Anal. Chem., 83, 7431, 10.1021/ac2014788
Duque, 2011, New route to fluorescent single-walled carbon nanotube/silica nanocomposites: balancing fluorescence intensity and environmental sensitivity, J. Phys. Chem. C, 115, 15147, 10.1021/jp2012107
Larsen, 2012, Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence, J. Am. Chem. Soc., 134, 12485, 10.1021/ja2114618
Duque, 2013, Mechanism of electrolyte-induced brightening in single-wall carbon nanotubes, J. Am. Chem. Soc., 135, 3379, 10.1021/ja4001757
Satishkumar, 2007, Reversible fluorescence quenching in carbon nanotubes for biomolecular sensing, Nat. Nanotechnol., 2, 560, 10.1038/nnano.2007.261
Lee, 2011, Bright fluorescence from individual single-walled carbon nanotubes, Nano Lett., 11, 1636, 10.1021/nl200077t
Zhu, 2012, Turn-on fluorescence sensor based on single-walled-carbon-nanohorn-peptide complex for the detection of thrombin, Chem. Eur. J., 18, 16556, 10.1002/chem.201201468
Tsyboulski, 2007, Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes, Nano Lett., 7, 3080, 10.1021/nl071561s
Carlson, 2007, Fluorescence efficiency of individual carbon nanotubes, Nano Lett., 7, 3698, 10.1021/nl072014+
Qu, 2002, Interactions of functionalized carbon nanotubes with tethered pyrenes in solution, J. Chem. Phys., 117, 8089, 10.1063/1.1510745
Baskaran, 2005, Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer, J. Am. Chem. Soc., 127, 6916, 10.1021/ja0508222
Sandanayaka, 2009, Photoinduced charge separation in ion-paired porphyrin-single-wall carbon nanotube donor-acceptor hybrids, J. Phys. Chem. C, 113, 13425, 10.1021/jp901659p
Singh, 2011, Evidence for defect-enhanced photoluminescence quenching of fluorescein by carbon nanotubes, J. Phys. Chem. C, 115, 24067, 10.1021/jp207392d
Huang, 2011, Spectroscopic properties of nanotube-chromophore hybrids, ACS Nano, 5, 7767, 10.1021/nn202725g
Biju, 2006, Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube, J. Phys. Chem. B, 110, 26068, 10.1021/jp0657890
Frangioni, 2003, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 7, 626, 10.1016/j.cbpa.2003.08.007
Barone, 2005, Near-infrared optical sensors based on single-walled carbon nanotubes, Nat. Mater., 4, 86, 10.1038/nmat1276
Barone, 2005, In vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages, Anal. Chem., 77, 7556, 10.1021/ac0511997
Barone, 2006, Reversible control of carbon nanotube aggregation for a glucose affinity sensor, Angew. Chem. Int. Ed., 45, 8138, 10.1002/anie.200603138
Yum, 2012, Boronic acid library for selective, reversible near-infrared fluorescence quenching of surfactant suspended single-walled carbon nanotubes in response to glucose, ACS Nano, 6, 819, 10.1021/nn204323f
James, 1996, Saccharide sensing with molecular receptors based on boronic acid, Angew. Chem. Int. Ed., 35, 1910, 10.1002/anie.199619101
James, 2002, Artificial receptors as chemosensors for carbohydrates, Top. Curr. Chem., 218, 159, 10.1007/3-540-45010-6_6
Bull, 2013, Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly, Acc. Chem. Res., 46, 312, 10.1021/ar300130w
Mu, 2012, A structure–function relationship for the optical modulation of phenyl boronic acid-grafted, polyethylene glycol-wrapped single-walled carbon nanotubes, J. Am. Chem. Soc., 134, 17620, 10.1021/ja307085h
Jin, 2008, Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors, Nano Lett., 8, 4299, 10.1021/nl802010z
Heller, 2009, Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes, Nat. Nanotechnol., 4, 114, 10.1038/nnano.2008.369
Kim, 2010, A Luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP, Angew. Chem. Int. Ed., 49, 1456, 10.1002/anie.200906251
Kim, 2009, The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection, Nat. Chem., 1, 473, 10.1038/nchem.332
Chen, 2009, A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes, Chem. Commun., 5006, 10.1039/b910457g
Cha, 2011, Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes, ACS Nano, 5, 4236, 10.1021/nn201323h
Ahn, 2011, Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis, Nano Lett., 11, 2743, 10.1021/nl201033d
Brege, 2009, Fluorescence quenching of single-walled carbon nanotubes with transition-metal ions, J. Phys. Chem. C, 113, 4270, 10.1021/jp808667b
Reuel, 2011, Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling, J. Am. Chem. Soc., 133, 17923, 10.1021/ja2074938
Perebeinos, 2004, Scaling of excitons in carbon nanotubes, Phys. Rev. Lett., 92, 257402, 10.1103/PhysRevLett.92.257402
Walsh, 2007, Screening of excitons in single, suspended carbon nanotubes, Nano Lett., 7, 1485, 10.1021/nl070193p
Jeng, 2006, Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes, Nano Lett., 3, 371, 10.1021/nl051829k
Heller, 2006, Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science, 311, 508, 10.1126/science.1120792
Jeng, 2010, Detection of a single nucleotide polymorphism using single-walled carbon-nanotube near-infrared fluorescence, Small, 6, 40, 10.1002/smll.200900944
Heller, 2011, Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics, Proc. Natl. Acad. Sci. U. S. A., 108, 8544, 10.1073/pnas.1005512108
Gao, 2003, Spontaneous insertion of DNA oligonucleotides into carbon nanotubes, Nano Lett., 3, 471, 10.1021/nl025967a
Martin, 2008, Simulation study of noncovalent hybridization of carbon nanotubes by single-stranded DNA in water, J. Phys. Chem. B, 112, 16076, 10.1021/jp8040567
Zhao, 2007, Simulation of adsorption of DNA on carbon nanotubes, J. Am. Chem. Soc., 129, 10438, 10.1021/ja071844m
Yang, 2008, Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization, J. Am. Chem. Soc., 130, 8351, 10.1021/ja800604z
Yang, 2008, Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions, Anal. Chem., 80, 7408, 10.1021/ac801118p
Zhang, 2010, Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion, Chem. Commun., 46, 1476, 10.1039/b921191h
Zhao, 2010, A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions, Chem. Eur. J., 16, 8147, 10.1002/chem.201000306
Yao, 2011, Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(II) in water, Analyst, 136, 764, 10.1039/C0AN00709A
Clever, 2007, DNA–metal base pairs, Angew. Chem. Int. Ed., 46, 6226, 10.1002/anie.200701185
Liu, 2011, Nanoprobes: quantitatively detecting the femtogram level of arsenite ions in live cells, ACS Nano, 5, 5560, 10.1021/nn200994r
Zhang, 2010, A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay, Biosens. Bioelectron., 25, 1897, 10.1016/j.bios.2010.01.002
Zhang, 2011, One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers, Biosens. Bioelectron., 26, 3505, 10.1016/j.bios.2011.01.035
Guo, 2011, Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A, Talanta, 85, 2517, 10.1016/j.talanta.2011.08.015
Chen, 2012, A novel exonuclease III aided amplification method for sensitive nucleic acid detection based on single walled carbon nanotube induced quenching, Chem. Commun., 48, 269, 10.1039/C1CC16127J
Zhen, 2010, Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer, Anal. Chem., 82, 8432, 10.1021/ac100709s
Li, 2011, Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection, J. Mater. Chem., 21, 824, 10.1039/C0JM02695F
Zhan, 2012, Sensitive spectrofluorometry of cellular prion protein based on the on–off interaction between fluorescent dye-labelled aptamers and multi-walled carbon nanotubes, Analyst, 137, 4968, 10.1039/c2an35924c
Wang, 2013, Aptamer biosensing platform based on carbon nanotube long-range energy transfer for sensitive, selective and multicolor fluorescent heavy metal ion analysis, Anal. Methods, 5, 2947, 10.1039/c3ay40360b
Cui, 2008, Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection, Anal. Chem., 80, 7996, 10.1021/ac800992m
Tian, 2012, Detection of influenza A virus based on fluorescence resonance energy transfer from quantum dots to carbon nanotubes, Anal. Chim. Acta, 723, 83, 10.1016/j.aca.2012.02.030
Liu, 2009, Fluorescent assay of DNA hybridization with label-free molecular switch: reducing background-signal and improving specificity by using carbon nanotubes, Chem. Commun., 665, 10.1039/b819526a
Ouyang, 2011, New strategy for label-free and time-resolved luminescent assay of protein: conjugate Eu3+ complex and aptamer-wrapped carbon nanotubes, Anal. Chem., 83, 782, 10.1021/ac103087z
Guo, 2011, Label-free fluorescent sensor for mercury (II) ion by using carbon nanotubes to reduce background signal, Analyst, 136, 1632, 10.1039/c0an00880j