Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil

NanoImpact - Tập 11 - Trang 146-155 - 2018
Haiyun Zhang1, Fan Wu1, Weixiao Chen1, Xinyu Zhang1, Pedro J.J. Alvarez2, J. Julio Ortega-Calvo3, Yu Yang4, Shu Tao1, Xilong Wang1
1Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
2Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
3Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Spain
4Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, United States

Tài liệu tham khảo

Bai, 2011, Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent, Carbon, 49, 3663, 10.1016/j.carbon.2011.05.002 Boldrin, 1993, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp, Appl. Environ. Microbiol., 59, 1927, 10.1128/AEM.59.6.1927-1930.1993 Broos, 2005, Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: as comparative study, Environ. Toxicol. Chem., 24, 634, 10.1897/04-036R.1 Chung, 2011, The effect of multi-walled carbon nanotubes on soil microbial activity, Ecotoxicol. Environ. Saf., 74, 569, 10.1016/j.ecoenv.2011.01.004 Chung, 2015, Effects of graphene oxides on soil enzyme activity and microbial biomass, Sci. Total Environ., 514, 307, 10.1016/j.scitotenv.2015.01.077 Cui, 2011, Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment, Ecotoxicology, 20, 1277, 10.1007/s10646-011-0684-3 DeBruyn, 2007, Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments, Environ. Sci. Technol., 41, 5426, 10.1021/es070406c Ding, 2010, Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system, Appl. Environ. Microbiol., 76, 4765, 10.1128/AEM.00047-10 Ferguson, 2008, Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates, Environ. Sci. Technol., 42, 3879, 10.1021/es702830b Ge, 2016, Long-term effects of multi-walled carbon nanotubes and graphene on microbial communities in dry soil, Environ. Sci. Technol., 50, 3965, 10.1021/acs.est.5b05620 Ge, 2018, Carbonaceous nanomaterials have higher effects on soybean rhizosphere prokaryotic communities during the reproductive growth phase than during vegetative growth, Environ. Sci. Technol., 52, 6636, 10.1021/acs.est.8b00937 Harms, 2011, Untapped potential: exploiting fungi in bioremediation of hazardous chemicals, Nat. Rev. Microbiol., 9, 177, 10.1038/nrmicro2519 Holden, 2014, Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant?, Environ. Sci. Technol., 48, 10541, 10.1021/es502440s Jin, 2013, High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass, Ecotoxicol. Environ. Saf., 88, 9, 10.1016/j.ecoenv.2012.10.031 Jurelevicius, 2012, Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula, Appl. Soil Ecol., 55, 1, 10.1016/j.apsoil.2011.12.008 Kobayashi, 2009, Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts, Annu. Rev. Phytopathol., 47, 63, 10.1146/annurev-phyto-080508-081729 Kostka, 2011, Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill, Appl. Environ. Microbiol., 77, 7962, 10.1128/AEM.05402-11 Liu, 2009, Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, 3891, 10.1021/nn901252r Moody, 2001, Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1, Appl. Environ. Microbiol., 67, 1476, 10.1128/AEM.67.4.1476-1483.2001 Niepceron, 2010, Both cycloclasticus spp. and pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France), FEMS Microbiol. Ecol., 71, 137, 10.1111/j.1574-6941.2009.00788.x Niepceron, 2013, Gammaproteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils, Environ. Pollut., 180, 199, 10.1016/j.envpol.2013.05.040 Nyberg, 2008, Assessing the impact of nanomaterials on anaerobic microbial communities, Environ. Sci. Technol., 42, 1938, 10.1021/es072018g Olajire, 2014, Aerobic degradation of petroleum components by microbial consortia, J. Pet. Environ. Biotechnol., 5, 195, 10.4172/2157-7463.1000195 Oyelami, 2015, The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil, Environ. Sci.: Processes Impacts, 17, 1302 Petersen, 2009, Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms, Environ. Sci. Technol., 43, 4181, 10.1021/es803023a Ren, 2015, Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil, Front. Microbiol., 6, 22, 10.3389/fmicb.2015.00022 Rodrigues, 2010, Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm, Environ. Sci. Technol., 44, 4583, 10.1021/es1005785 Rodrigues, 2012, Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil, Environ. Sci. Technol., 47, 625, 10.1021/es304002q Salvo, 2005, Fungal communities in PAH-impacted sediments of Genoa-Voltri Harbour (NW Mediterranean, Italy), Mar. Pollut. Bull., 50, 553, 10.1016/j.marpolbul.2005.01.001 Sawulski, 2014, Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil, Biodegradation, 25, 835, 10.1007/s10532-014-9703-4 Shan, 2015, Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil, Sci. Rep., 5, 16000, 10.1038/srep16000 Shen, 2012, Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment, Environ. Toxicol. Chem., 31, 202, 10.1002/etc.722 Singh, 2006 Tong, 2007, Impact of fullerene (C60) on a soil microbial community, Environ. Sci. Technol., 41, 2985, 10.1021/es061953l Tong, 2012, Response of soil microorganisms to as-produced and functionalized single-walled carbon nanotubes (SWNTs), Environ. Sci. Technol., 46, 13471, 10.1021/es303251r Towell, 2011, Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil, Environ. Pollut., 159, 706, 10.1016/j.envpol.2010.11.040 Vance, 1987, Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils, Soil Biol. Biochem., 19, 697, 10.1016/0038-0717(87)90051-4 Vinas, 2005, Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil, Appl. Environ. Microbiol., 71, 7008, 10.1128/AEM.71.11.7008-7018.2005 Walter, 1991, Degradation of pyrene by Rhodococcus sp. UW1, Appl. Microbiol. Biotechnol., 34, 671, 10.1007/BF00167921 Wang, 2010, Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes, Carbon, 48, 3721, 10.1016/j.carbon.2010.06.034 Wang, 2016, The impact of carbon nanotubes on bioaccumulation and translocation of phenanthrene, 3-CH3-phenanthrene and 9-NO2-phenanthrene in maize (Zea mays) seedlings, Environ. Sci.: Nano, 3, 818 Winquist, 2014, Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale, Int. Biodeterior. Biodegrad., 86, 238, 10.1016/j.ibiod.2013.09.012 Xia, 2010, Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium, Chemosphere, 78, 1329, 10.1016/j.chemosphere.2010.01.007 Xia, 2013, Mineralization of phenanthrene sorbed on multi-walled carbon nanotubes, Environ. Toxicol. Chem., 32, 894, 10.1002/etc.2125 Xia, 2015, Response of PAH-degrading genes to PAH bioavailability in the overlaying water, suspended sediment, and deposited sediment of the Yangze River, Chemosphere, 128, 236, 10.1016/j.chemosphere.2015.02.011 Yang, 2006, Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes, Environ. Sci. Technol., 40, 5804, 10.1021/es061081n Yang, 2010, Effects of composition and domain arrangement of biopolymer compounds of soil organic matter on the bioavailability of phenanthrene, Environ. Sci. Technol., 44, 3339, 10.1021/es903586v Yang, 2017, Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32, Sci. Total Environ., 577, 54, 10.1016/j.scitotenv.2016.10.053 Zeinali, 2008, Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism, Chemosphere, 72, 905, 10.1016/j.chemosphere.2008.03.038 Zhang, 2016, Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials, Carbon, 110, 404, 10.1016/j.carbon.2016.09.044 Zhang, 2017, Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi), Environ. Sci.: Nano, 4, 1887 Zhou, 2013, Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil, Chemosphere, 90, 527, 10.1016/j.chemosphere.2012.08.022 Zhu, 2016, Effects of carbonaceous materials on microbial bioavailability of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in sediments, J. Hazard. Mater., 312, 216, 10.1016/j.jhazmat.2016.03.065