Carbon nanomaterials differentially impact mineralization kinetics of phenanthrene and indigenous microbial communities in a natural soil
Tài liệu tham khảo
Bai, 2011, Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent, Carbon, 49, 3663, 10.1016/j.carbon.2011.05.002
Boldrin, 1993, Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp, Appl. Environ. Microbiol., 59, 1927, 10.1128/AEM.59.6.1927-1930.1993
Broos, 2005, Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: as comparative study, Environ. Toxicol. Chem., 24, 634, 10.1897/04-036R.1
Chung, 2011, The effect of multi-walled carbon nanotubes on soil microbial activity, Ecotoxicol. Environ. Saf., 74, 569, 10.1016/j.ecoenv.2011.01.004
Chung, 2015, Effects of graphene oxides on soil enzyme activity and microbial biomass, Sci. Total Environ., 514, 307, 10.1016/j.scitotenv.2015.01.077
Cui, 2011, Influence of single-walled carbon nanotubes on microbial availability of phenanthrene in sediment, Ecotoxicology, 20, 1277, 10.1007/s10646-011-0684-3
DeBruyn, 2007, Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments, Environ. Sci. Technol., 41, 5426, 10.1021/es070406c
Ding, 2010, Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system, Appl. Environ. Microbiol., 76, 4765, 10.1128/AEM.00047-10
Ferguson, 2008, Influence of sediment-amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates, Environ. Sci. Technol., 42, 3879, 10.1021/es702830b
Ge, 2016, Long-term effects of multi-walled carbon nanotubes and graphene on microbial communities in dry soil, Environ. Sci. Technol., 50, 3965, 10.1021/acs.est.5b05620
Ge, 2018, Carbonaceous nanomaterials have higher effects on soybean rhizosphere prokaryotic communities during the reproductive growth phase than during vegetative growth, Environ. Sci. Technol., 52, 6636, 10.1021/acs.est.8b00937
Harms, 2011, Untapped potential: exploiting fungi in bioremediation of hazardous chemicals, Nat. Rev. Microbiol., 9, 177, 10.1038/nrmicro2519
Holden, 2014, Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant?, Environ. Sci. Technol., 48, 10541, 10.1021/es502440s
Jin, 2013, High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass, Ecotoxicol. Environ. Saf., 88, 9, 10.1016/j.ecoenv.2012.10.031
Jurelevicius, 2012, Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula, Appl. Soil Ecol., 55, 1, 10.1016/j.apsoil.2011.12.008
Kobayashi, 2009, Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts, Annu. Rev. Phytopathol., 47, 63, 10.1146/annurev-phyto-080508-081729
Kostka, 2011, Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill, Appl. Environ. Microbiol., 77, 7962, 10.1128/AEM.05402-11
Liu, 2009, Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3, 3891, 10.1021/nn901252r
Moody, 2001, Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1, Appl. Environ. Microbiol., 67, 1476, 10.1128/AEM.67.4.1476-1483.2001
Niepceron, 2010, Both cycloclasticus spp. and pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France), FEMS Microbiol. Ecol., 71, 137, 10.1111/j.1574-6941.2009.00788.x
Niepceron, 2013, Gammaproteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils, Environ. Pollut., 180, 199, 10.1016/j.envpol.2013.05.040
Nyberg, 2008, Assessing the impact of nanomaterials on anaerobic microbial communities, Environ. Sci. Technol., 42, 1938, 10.1021/es072018g
Olajire, 2014, Aerobic degradation of petroleum components by microbial consortia, J. Pet. Environ. Biotechnol., 5, 195, 10.4172/2157-7463.1000195
Oyelami, 2015, The impact of carbon nanomaterials on the development of phenanthrene catabolism in soil, Environ. Sci.: Processes Impacts, 17, 1302
Petersen, 2009, Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms, Environ. Sci. Technol., 43, 4181, 10.1021/es803023a
Ren, 2015, Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil, Front. Microbiol., 6, 22, 10.3389/fmicb.2015.00022
Rodrigues, 2010, Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm, Environ. Sci. Technol., 44, 4583, 10.1021/es1005785
Rodrigues, 2012, Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil, Environ. Sci. Technol., 47, 625, 10.1021/es304002q
Salvo, 2005, Fungal communities in PAH-impacted sediments of Genoa-Voltri Harbour (NW Mediterranean, Italy), Mar. Pollut. Bull., 50, 553, 10.1016/j.marpolbul.2005.01.001
Sawulski, 2014, Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil, Biodegradation, 25, 835, 10.1007/s10532-014-9703-4
Shan, 2015, Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil, Sci. Rep., 5, 16000, 10.1038/srep16000
Shen, 2012, Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment, Environ. Toxicol. Chem., 31, 202, 10.1002/etc.722
Singh, 2006
Tong, 2007, Impact of fullerene (C60) on a soil microbial community, Environ. Sci. Technol., 41, 2985, 10.1021/es061953l
Tong, 2012, Response of soil microorganisms to as-produced and functionalized single-walled carbon nanotubes (SWNTs), Environ. Sci. Technol., 46, 13471, 10.1021/es303251r
Towell, 2011, Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil, Environ. Pollut., 159, 706, 10.1016/j.envpol.2010.11.040
Vance, 1987, Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils, Soil Biol. Biochem., 19, 697, 10.1016/0038-0717(87)90051-4
Vinas, 2005, Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil, Appl. Environ. Microbiol., 71, 7008, 10.1128/AEM.71.11.7008-7018.2005
Walter, 1991, Degradation of pyrene by Rhodococcus sp. UW1, Appl. Microbiol. Biotechnol., 34, 671, 10.1007/BF00167921
Wang, 2010, Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes, Carbon, 48, 3721, 10.1016/j.carbon.2010.06.034
Wang, 2016, The impact of carbon nanotubes on bioaccumulation and translocation of phenanthrene, 3-CH3-phenanthrene and 9-NO2-phenanthrene in maize (Zea mays) seedlings, Environ. Sci.: Nano, 3, 818
Winquist, 2014, Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale, Int. Biodeterior. Biodegrad., 86, 238, 10.1016/j.ibiod.2013.09.012
Xia, 2010, Bioavailability of adsorbed phenanthrene by black carbon and multi-walled carbon nanotubes to Agrobacterium, Chemosphere, 78, 1329, 10.1016/j.chemosphere.2010.01.007
Xia, 2013, Mineralization of phenanthrene sorbed on multi-walled carbon nanotubes, Environ. Toxicol. Chem., 32, 894, 10.1002/etc.2125
Xia, 2015, Response of PAH-degrading genes to PAH bioavailability in the overlaying water, suspended sediment, and deposited sediment of the Yangze River, Chemosphere, 128, 236, 10.1016/j.chemosphere.2015.02.011
Yang, 2006, Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes, Environ. Sci. Technol., 40, 5804, 10.1021/es061081n
Yang, 2010, Effects of composition and domain arrangement of biopolymer compounds of soil organic matter on the bioavailability of phenanthrene, Environ. Sci. Technol., 44, 3339, 10.1021/es903586v
Yang, 2017, Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32, Sci. Total Environ., 577, 54, 10.1016/j.scitotenv.2016.10.053
Zeinali, 2008, Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism, Chemosphere, 72, 905, 10.1016/j.chemosphere.2008.03.038
Zhang, 2016, Bioavailability of phenanthrene and nitrobenzene sorbed on carbonaceous materials, Carbon, 110, 404, 10.1016/j.carbon.2016.09.044
Zhang, 2017, Influence of multi-walled carbon nanotubes and fullerenes on the bioaccumulation and elimination kinetics of phenanthrene in geophagous earthworms (Metaphire guillelmi), Environ. Sci.: Nano, 4, 1887
Zhou, 2013, Inhibitory effects of carbon nanotubes on the degradation of 14C-2,4-dichlorophenol in soil, Chemosphere, 90, 527, 10.1016/j.chemosphere.2012.08.022
Zhu, 2016, Effects of carbonaceous materials on microbial bioavailability of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in sediments, J. Hazard. Mater., 312, 216, 10.1016/j.jhazmat.2016.03.065
