Carbon materials for the electrochemical storage of energy in capacitors

Carbon - Tập 39 Số 6 - Trang 937-950 - 2001
Elżbieta Frąckowiak1, François Béguin2
1Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland.
2Centre de Recherche sur la Matière Divisée, CNRS – Université, 1b Rue de la Férollerie, 45071 Orléans, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Conway, 1999

Conway, 1991, Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage, J Electrochem Soc, 138, 1539, 10.1149/1.2085829

Sarangapani, 1996, Review – materials for electrochemical capacitors, J Electrochem Soc, 143, 3791, 10.1149/1.1837291

Jurewicz K Frackowiak, 1999, 924

Jurewicz, 2000, Modified carbon materials for electrochemical capacitors, Mol Phys Reports, 27, 36

Ingram, 1998, Development of electrochemical capacitors incorporating processable polymer gel electrolytes, Electrochim Acta, 43, 1601, 10.1016/S0013-4686(97)10060-3

Rudge, 1994, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors, Electrochim Acta, 39, 273, 10.1016/0013-4686(94)80063-4

Rudge, 1994, Conducting polymers as active materials in electrochemical capacitors, J Power Sourc, 47, 89, 10.1016/0378-7753(94)80053-7

Momma, 1996, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J Power Sourc, 60, 249, 10.1016/S0378-7753(96)80018-8

Ishikawa, 1996, Effect of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors, J Power Sourc, 60, 233, 10.1016/S0378-7753(96)80016-4

Miller, 1999, Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures, Langmuir, 15, 799, 10.1021/la980799g

Long, 1999, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir, 15, 780, 10.1021/la980785a

Miller, 1997, Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes, J Electrochem Soc, 144, L309, 10.1149/1.1838142

Conway, 1997, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J Power Sourc, 66, 1, 10.1016/S0378-7753(96)02474-3

Otero, 1999, Solvents effects on the charge storage ability in polypyrrole, Electrochim Acta, 44, 2053, 10.1016/S0013-4686(98)00313-2

McKeown, 1999, Structure of hydrous ruthenium oxides: implications for charge storage, J Phys Chem B, 103, 4825, 10.1021/jp990096n

Tanahashi, 1990, Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte, Bull Chem Soc Jpn, 63, 3611, 10.1246/bcsj.63.3611

Osaka, 1999, An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder, J Electrochem Soc, 146, 1724, 10.1149/1.1391833

McEwen, 1999, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J Electrochem Soc, 146, 1687, 10.1149/1.1391827

Shi, 1996, Activated carbons and double layer capacitance, Electrochim Acta, 41, 1633, 10.1016/0013-4686(95)00416-5

Qu, 1998, Studies of activated carbons used in double-layer capacitors, J Power Sourc, 74, 99, 10.1016/S0378-7753(98)00038-X

Shi, 1997, 826

Kastening, 1997, Electronic properties and double layer of activated carbon, Electrochim Acta, 42, 2789, 10.1016/S0013-4686(97)00082-0

Kastening, 1998, A model of the electronic properties of activated carbon, Ber Bunsenges Phys Chem, 102, 229, 10.1002/bbpc.19981020214

Rose, 1995, 1

Rose, 1994, Limiting factors for carbon based chemical double-layer capacitance, J Power Sourc, 47, 303, 10.1016/0378-7753(94)87009-8

Tanahashi, 1990, Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors, Carbon, 28, 477, 10.1016/0008-6223(90)90041-V

Tanahashi, 1990, Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors, J Electrochem Soc, 137, 3052, 10.1149/1.2086158

Evans MJB, Halliop E. Porous carbon electrodes for electrical double layer capacitors. Extended abstracts, Eurocarbon ’98, Strasbourg (France). 1998;11:803–4.

Bonnefoi, 1999, Multi electrode prismatic power prototype carbon/carbon supercapacitors, J Power Sourc, 83, 162, 10.1016/S0378-7753(99)00292-X

Bonnefoi, 1999, Electrode optimisation for carbon power supercapacitors, J Power Sourc, 79, 37, 10.1016/S0378-7753(98)00197-9

Bonnefoi, 1999, Electrode compositions for carbon power supercapacitors, J Power Sourc, 80, 149, 10.1016/S0378-7753(99)00069-5

Kibi, 1996, Fabrication of high-power electric double-layer capacitors, J Power Sourc, 60, 219, 10.1016/S0378-7753(96)80014-0

Mayer, 1993, The aerocapacitor: an electrochemical double-layer energy-storage device, J Electrochem. Soc, 140, 446, 10.1149/1.2221066

Pekala, 1998, Carbon aerogels for electrochemical applications, J Non-Cryst Solids, 225, 74, 10.1016/S0022-3093(98)00011-8

Escribano, 1998, 841

Saliger, 1998, High surface area carbon aerogels for supercapacitors, J Non-Cryst Solids, 225, 81, 10.1016/S0022-3093(98)00104-5

Gouerec, 1999, 203

Lin C, Ritter JA, Popow BN. Novel synthetic carbon materials as supercapacitors. Extended abstracts, 23rd Biennial Conf. on Carbon, Penn State (USA). American Carbon Society, 1997;II:160–1.

Ritter JA, Zanto EJ, Holland CE, Popov BN. Modification of the pore structure of carbon aerogels and xerogels for energy storage. Extended abstracts, 24th Biennial Conf. on Carbon Charleston (South Carolina USA). American Carbon Society 1999;1:10–1.

Che, 1998, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 393, 346, 10.1038/30694

Che, 1999, Metal-nanocluster-filled carbon nanotubes:Catalytic properties and possible applications in electrochemical energy storage and production, Langmuir, 15, 750, 10.1021/la980663i

Nutzenadel, 1999, Electrochemical storage of hydrogen in nanotube materials, Electrochem Solid-State Lett, 2, 30, 10.1149/1.1390724

Frackowiak, 1999, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 37, 61, 10.1016/S0008-6223(98)00187-0

Leroux, 1999, Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, J Power Sources, 81–82, 317, 10.1016/S0378-7753(99)00130-5

Frackowiak E, Méténier K, Kyotani T, Bonnamy S, Béguin F. Electrochemical properties of carbon nanotubes. Extended abstracts, 24th Biennial Conf. on Carbon, Charleston (South Carolina USA). American Carbon Society 1999;II:544–5.

Frackowiak, 1999, Capacitance properties of carbon nanotubes, 429

Lafdi K, Clay J. Materials approach to study supercapacitor performance. Extended abstracts, 22nd Biennial Conf. on Carbon, UC San Diego (California USA). American Carbon Society 1995:824–5.

Niu, 1997, High power electrochemical capacitors based on carbon nanotube electrodes, Appl Phys Lett, 70, 1480, 10.1063/1.118568

Diederich, 1999, Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition, Appl Phys Lett, 75, 2662, 10.1063/1.125111

Duclaux, 1999, Novel carbons from nanocomposites for high lithium storage, J Power Sourc, 81–82, 323, 10.1016/S0378-7753(99)00131-7

Duclaux, 2000, Clay/Carbon nanocomposites as precursors of electrode materials for lithium-ion batteries and supercapacitors, Mol Cryst Liq Cryst, 340, 449, 10.1080/10587250008025507

Kyotani, 1996, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminum oxide film, Chem Mater, 8, 2109, 10.1021/cm960063+

Frackowiak, 2000, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77, 2421, 10.1063/1.1290146