Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane

Nature Geoscience - Tập 7 Số 3 - Trang 190-194 - 2014
Marcos Y. Yoshinaga1, Thomas Holler2, Tobias Goldhammer1, Gunter Wegener1, J. Pohlman3, Benjamin Brunner2, Marcel M. M. Kuypers2, Kai‐Uwe Hinrichs1, Marcus Elvert1
1MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen D-28359, Germany
2Max Planck Institute for Marine Microbiology, Bremen D-28359, Germany
3US Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, Massachusetts 02543, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barker, J. F. & Fritz, P. Carbon isotope fractionation during microbial methane oxidation. Nature 293, 289–291 (1981).

Alperin, M. J., Reeburgh, W. S. & Whiticar, M. J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob. Biogeochem. Cycle 2, 279–288 (1988).

Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

Borowski, W. S., Paull, C. K. & Ussler III, W. Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Mar. Chem. 57, 299–311 (1997).

Hoehler, T. M., Borowski, W. S., Alperin, M. J., Rodriguez, N. M. & Paull, C. K. in Gas hydrate sampling on the Blake Ridge and Carolina Rise (eds Paull, C. K., Matsumoto, R., Wallace, P. J. & Dillon, W. P.) 79–85 2000).

Pohlman, J. W., Ruppel, C., Hutchinson, D. R. & Coffin, R. B. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico. Mar. Petrol. Geol. 25, 942–951 (2008).

Milkov, A. V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there?. Earth Sci. Rev. 66, 183–197 (2004).

Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

Malinverno, A. & Pohlman, J. W. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?. Geochem. Geophys. Geosyst. 12, http://dx.doi.org/10.1029/2011GC003501 (2011)

Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

Knab, N. J., Dale, A. W., Lettmann, K., Fossing, H. & Jørgensen, B. B. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments. Geochim. Cosmochim. Acta 72, 3746–3757 (2008).

Alperin, M. J. & Hoehler, T. M. Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am. J. Sci. 309, 869–957 (2009).

Hallam, S. J. et al. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

Haldane, J. B. S. Enzymes (Longmans, (1930).

Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061–2076 (2009).

Holler, T. et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction. Proc. Natl Acad. Sci. USA 108, E1484–E1490 (2011).

Holler, T. et al. Substantial 13C/12C and D/H fractionation during anaerobic oxidation of methane by marine consortia enriched in vitro . Environ. Microbiol. Rep. 1, 370–376 (2009).

Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Deposits 2nd edn (ed Barnes, H. L.) 509–567 (Wiley, 1979).

Nauhaus, K., Boetius, A., Krüger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296–305 (2002).

Seifert, R., Nauhaus, K., Blumenberg, M., Krüger, M. & Michaelis, W. Methane dynamics in a microbial community of the Black Sea traced by stable carbon isotopes in vitro . Org. Geochem. 37, 1411–1419 (2006).

Kendall, M. M. et al. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl. Environ. Microbiol. 73, 407–414 (2007).

Orcutt, B., Boetius, A., Elvert, M., Samarkin, V. & Joye, S. B. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim. Cosmochim. Acta 69, 4267–4281 (2005).

Parkes, R. J. et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9, 1146–1161 (2007).

Yoshioka, H. et al. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin. Geobiology 8, 223–233 (2010).

Beal, E. J., Claire, M. W. & House, C. H. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels. Geobiology 9, 131–139 (2011).

Treude, T. et al. Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin. Geochim. Cosmichim. Acta 69, 2767–2779 (2005).

Knab, N. J. et al. Regulation of anaerobic methane oxidation in sediments of the Black Sea. Biogeosciences 6, 1505–1518 (2009).

Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).

Lloyd, K. G., Alperin, M. J. & Teske, A. Environmental evidence for net methane production and oxidation in putative Anaerobic Methanotrophic (ANME) archaea. Environ. Microbiol. 13, 2548–2564 (2011).

Jørgensen, B. B. & D’Hondt, S. A starving majority deep beneath the seafloor. Science 314, 932–934 (2006).