Carbon-fiber-reinforced polyetheretherketone orthopedic implants in musculoskeletal and spinal tumors: imaging and clinical features
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hak DJ, Fader R, Baldini T, Chadayammuri VBS. Locking screw-plate interface stability in carbon-fibre reinforced polyetheretherketone proximal humerus plates. Int Orthop. 2017;41(9):1735–9.
Hillock R, Howard S. Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstr Rev. 2014;4(1).
Van Nortwick SS, Yao J, Ladd AL. Titanium integration with bone, welding, and screw head destruction complicating hardware removal of the distal radius: report of 2 cases. J Hand Surg Am. 2012;37(7):1388–92.
Vles GF, Brodermann MH, Roussot MA, Youngman J. Carbon-fiber-reinforced PEEK intramedullary nails defining the niche. Case Rep Orthop. 2019;2019:1538158.
Potter BK. From bench to bedside: radiolucent implants-better visualization or camouflaged gimmick? Clin Orthop Relat Res. 2022;480(3):461–3.
Hsissou R, Seghiri R, Benzekri Z, et al. Polymer composite materials: a comprehensive review. Compos Struct. 2021;262: 113640.
Steinberg EL, Rath E, Shlaifer A, Ofir C, et al. Carbon fiber reinforced PEEK Optima–a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.
Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol. 2015;44(9):1317–25.
Spratt DE, Beeler WH, de Moraes FY, et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol. 2017;18(12):e720–30.
Charest-Morin R, Fisher CG, Sahgal A, et al. Primary bone tumor of the spine-an evolving field: what a general spine surgeon should know. Glob Spine J. 2019;9(1 Suppl):108S-116S.
Jia Y, Zhao L, Cheng C, et al. Dose perturbation effect of metallic spinal implants in proton beam therapy. J Appl Clin Med Phys. 2015;16(5):333–43.
Boriani S, Tedesco G, Ming L, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J. 2018;27(4):874–81.
Tedesco G, Gasbarrini A, Bandiera, et al. Composite PEEK/Carbon fiber implants can increase the effectiveness of radiotherapy in the management of spine tumors. J Spine Surg. 2017;3(3):323–9.
Boriani S, Pipola V, Cecchinato R, et al. Composite PEEK/carbon fiber rods in the treatment for bone tumors of the cervical spine: a case series. Eur Spine J. 2020;29(12):3229–36.
Cofano F, Di Perna G, Monticelli M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: a comparative clinical study about safety and effectiveness of the new “carbon-strategy.” J Clin Neurosci. 2020;75:106–11.
Adler D, Akbar M, Spicher A, et al. Biomechanical study of a novel, expandable, non-metallic and radiolucent CF/PEEK vertebral body replacement (VBR). Materials (Basel). 2019;12(17):2732.
Milavec H, Kellner C, Ravikumar N, et al. First clinical experience with a carbon fibre reinforced PEEK composite plating system for anterior cervical discectomy and fusion. J Funct Biomater. 2019;10(3):29.
Bruner HJ, Guan Y, Yoganandan N, et al. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine. 2010;13(6):766–72.
Uri O, Folman Y, Laufer G, Behrbalk E. A novel spine fixation system made entirely of carbon-fiber-reinforced PEEK composite: an in vitro mechanical evaluation. Adv Orthop. 2020;2020:4796136.
Lindtner RA, Schmid R, Nydegger T, et al. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. Eur Spine J. 2018;27(8):1775–84.
Oikonomidis S, Greven J, Bredow J, et al. Biomechanical effects of posterior pedicle screw-based instrumentation using titanium versus carbon fiber reinforced PEEK in an osteoporotic spine human cadaver model. Clin Biomech (Bristol, Avon). 2020;80: 105153.
Neal MT, Richards AE, Curley KL, et al. Carbon fiber-reinforced PEEK instrumentation in the spinal oncology population: a retrospective series demonstrating technique, feasibility, and clinical outcomes. Neurosurg Focus. 2021;50(5):E13.
Di Perna G, Cofano F, Mantovani C, Badellino S, et al. Separation surgery for metastatic epidural spinal cord compression: a qualitative review. J Bone Oncol. 2020;25: 100320.
Shen FH, Gasbarrini A, Lui DF, Reynolds J, et al. Integrated custom composite polyetheretherketone/carbon fiber (PEEK/CF) vertebral body replacement (VBR) in the treatment of bone tumors of the spine: a preliminary report from a multicenter study. Spine (Phila Pa 1976). 2022;47(3):252–60.
Laux CJ, Hodel SM, Farshad M, Muller DA. Carbon fibre/polyether ether ketone (CF/PEEK) implants in orthopaedic oncology. World J Surg Oncol. 2018;16(1):241.
ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii113-2.
ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii102-12.
Greenberg DD, Crawford B. Surveillance strategies for sarcoma: results of a survey of Members of the Musculoskeletal Tumor Society. Sarcoma. 2016;2016:8289509.
Puri A, Ranganathan P, Gulia A, Crasto S, et al. Does a less intensive surveillance protocol affect the survival of patients after treatment of a sarcoma of the limb? Updated results of the randomized TOSS study. Bone Joint J. 2018;100-B(2):262–8.
Weeden S, Grimer RJ, Cannon SR, Taminiau AH, et al. The effect of local recurrence on survival in resected osteosarcoma. Eur J Cancer. 2001;37(1):39–46.
Grimer RJ, Aydin BK, Wafa H, Carter SR, et al. Very long-term outcomes after endoprosthetic replacement for malignant tumours of bone. Bone Joint J. 2016;98-B(6):857–64.
Joo MW, Kang YK, Ogura K, Iwata S, et al. Post-radiation sarcoma: a study by the Eastern Asian Musculoskeletal Oncology Group. PLoS ONE. 2018;13(10): e0204927.
Amendola BE, Amendola MA, McClatchey KD, Miller CH Jr. Radiation-associated sarcoma: a review of 23 patients with postradiation sarcoma over a 50-year period. Am J Clin Oncol. 1989;12(5):411–5.
Erel E, Vlachou E, Athanasiadou M, Hassan S, et al. Management of radiation-induced sarcomas in a tertiary referral centre: a review of 25 cases. Breast. 2010;19(5):424–7.
Gladdy RA, Quin L, Moraco N, Edgar MA, et al. Do radiation-associated soft tissue sarcomas have the same prognosis as sporadic soft tissue sarcomas? J Clin Oncol. 2010;28(12):2064–9.
Chapelier AR, Bacha EA, de Montpreville VT, Dulmet EM, et al. Radical resection of radiation-induced sarcoma of the chest wall: report of 15 cases. Ann Thorac Surg. 1997;63(1):214–9.
Neuhaus SJ, Pinnock N, Giblin V, Fisher C, et al. Treatment and outcome of radiation-induced soft-tissue sarcomas at a specialist institution. Eur J Surg Oncol. 2009;35(6):654–9.
Goudriaan WA, Tordoir RL, Broekhuis D, van der Wal RJP. Early failure of a carbon-fiber-reinforced polyetheretherketone distal femur plate: a case report. JBJS Case Connect. 2020;10(3):e20.00041.
Mellon MB. Late recognition of an early catastrophic failure of a carbon fiber reinforced distal femoral plate: a case report. Trauma Case Rep. 2021;34: 100493.
Loeb AE, Mitchell SL, Osgood GM, Shafiq B. Catastrophic failure of a carbon-fiber-reinforced polyetheretherketone tibial intramedullary nail: a case report. JBJS Case Connect. 2018;8(4): e83.
Collis PN, Clegg TE, Seligson D. The invisible nail: a technique report of treatment of a pathological humerus fracture with a radiolucent intramedullary nail. Injury. 2011;42(4):424–6.
Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277–83.
Di Maggio B, Sessa P, Mantelli P, Maniscalco P, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. Injury. 2017;48(Suppl 3):S34–8.
Perugia D, Guzzini M, Mazza D, Iorio C, et al. Comparison between carbon-PEEK volar locking plates and titanium volar locking plates in the treatment of distal radius fractures. Injury. 2017;48(Suppl 3):S24–9.
Pinter ZW, Smith KS, Hudson PW, Jones CW, et al. A retrospective case series of carbon fiber plate fixation of ankle fractures. Foot Ankle Spec. 2018;11(3):223–9.
Gallagher EA, Lamoriniere S, McGarry P. Finite element investigation into the use of carbon fibre reinforced PEEK laminated composites for distal radius fracture fixation implants. Med Eng Phys. 2019;67:22–32.
Takashima K, Nakahara I, Uemura K, Hamada H, et al. Clinical outcomes of proximal femoral fractures treated with a novel carbon fiber-reinforced polyetheretherketone intramedullary nail. Injury. 2020;51(3):678–82.
Takayanagi A, Siddiqi I, Ghanchi H, Lischalk J, et al. Radiolucent carbon fiber-reinforced implants for treatment of spinal tumors-clinical, radiographic, and dosimetric considerations. World Neurosurg. 2021;152:61–70.
Ringel F, Ryang Y, Krischke JS, Muller BS, et al. Radiolucent carbon fiber-reinforced pedicle screws for treatment of spinal tumors: advantages for radiation planning and follow-up imaging. World Neurosurg. 2017;105:294–301.
Kratzig T, Mende KC, Mohme M, Kniep H, et al. Carbon fiber-reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg Rev. 2021;44(4):2163–70.
Caforio M, Perugia D, Colombo M, Calori GM, et al. Preliminary experience with Piccolo Composite™, a radiolucent distal fibula plate, in ankle fractures. Injury. 2014;45(Suppl 6):S36–8.
Kojic N, Rangger C, Ozgun C, Lojpur, et al. Carbon-fibre-reinforced PEEK radiolucent intramedullary nail for humeral shaft fracture fixation: technical features and a pilot clinical study. Injury. 2017;48(Suppl 5):S8–11.
Brantigan JW, Steffee AD, Lewis ML, Quinn LM, Persenaire JM. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine (Phila Pa 1976). 2000;25(11):1437–46.
Delaney FT, Denton H, Dodds M, Kavanaugh EC. Multimodal imaging of composite carbon fiber-based implants for orthopedic spinal fixation. Skelet Radiol. 2021;50(5):1039–45.
Huber FA, Sprengel K, Muller L, Graf LC, et al. Comparison of different CT metal artifact reduction strategies for standard titanium and carbon-fiber reinforced polymer implants in sheep cadavers. BMC Med Imaging. 2021;21(1):29.
Zoccali C, Soriana A, Rossi B, Salducca N, et al. The Carbofix™ “Piccolo proximal femur nail”: a new perspective for treating proximal femur lesion. A technique report. J Orthop. 2016;13(4):343–6.
Hargreaves BA, Worters PW, Pauly KB, Pauly JM, et al. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;197(3):547–55.
Fleege C, Makowski M, Rauschmann M, Fraunhoffer KL, et al. Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis. Sci Rep. 2020;10(1):16094.
Rutz HP, Weber DC, Sugahara S, Timmermann B, et al. Extracranial chordoma: outcome in patients treated with function-preserving surgery followed by spot-scanning proton beam irradiation. Int J Radiat Oncol Biol Phys. 2007;67(2):512–20.
Xin-ye N, Xiao-bin T, Chang-ran G, Da C. The prospect of carbon fiber implants in radiotherapy. J Appl Clin Med Phys. 2012;13(4):3821.
Nevelsky A, Borzov E, Daniel S, Bar-Deroma R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys. 2017;18(2):62–8.
Soriani A, Strigari L, Petrongari MG, Anelli V, et al. The advantages of carbon fiber based orthopedic devices in patients who have to undergo radiotherapy. Acta Biomed. 2020;91(3): e2020057.