Carbon costs and benefits of France’s biomass energy production targets
Tóm tắt
Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands. All three intensification strategies produced 11.6–12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015–2045 and 2046–2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time. No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.
Tài liệu tham khảo
European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union; 2009/28/EC 2009.
SOeS. Datalab. Chiffres clés de l’énergie. 2016th ed. Paris: Ministère de l’environnement, de l’énergie et de la mer; 2017. p. 71.
France. Programme National de la Forêt et du Bois. Projet présenté au Conseil supérieur de la forêt et du bois le 8 mars 2016; 2016.
FCBA. Mémento. FCBA; 2017 p. 46.
Ballu JM. Pour mobiliser la ressource de la forêt française. Résumé du rapport du groupe de travail sur l’insuffisante exploitation de la forêt française; 2008.
Colin A, Thivolle-Cazat A. Disponibilités forestières pour l’énergie et les matériaux à l’horizon 2035. IGN, FCBA, ADEME; 2016. p. 91. http://www.ademe.fr/disponibilites-forestieres-lenergie-materiaux-a-lhorizon-2035. Accessed 2 Dec 2018.
Mather AS, Fairbairn J, Needle CL. The course and drivers of the forest transition: the case of France. J Rural Stud. 1999;15:65–90.
Derrière N, Wurpillot S, Vidal C. Un siècle d’expansion des forêts françaises. De la statistique Daubrée à l’inventaire forestier de l’IGN. 31. Inventaire Forestier National; 2013.
Le Oudin A. Fonds Forestier National en France. Forstwiss Cent. 1956;75:286–90.
Agreste. Propriétaire et surface forestière en propriété par région, nature juridique et taille de propriété forestière. Ministère de l’agriculture, de l’agroalimentaire et de la forêt; 2012. http://agreste.agriculture.gouv.fr/IMG/pdf/foret2014T2bssef.pdf. Accessed 2 Dec 2018.
Boutet D, Philippe M-A. La petite propriété forestière privée dans la France contemporaine. Études Rurales, no. 165/166, 2003, pp. 197–208. JSTOR. https://www.jstor.org/stable/20122973
Lundmark T, Bergh J, Hofer P, Lundström A, Nordin A, Poudel BC, et al. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation. For 19994907; 2014. 5. http://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19994907&AN=95760021&h=f5gBrl00nno67LzNfjvpD7ePqleez1rvyqyiB7IpXfArMPl2lm7JqMWXDJ5qukFS246wHzVnkKdfkP80mDUPjw%3D%3D&crl=c. Accessed 18 Aug 2016.
Kallio AMI, Salminen O, Sievänen R. Sequester or substitute—consequences of increased production of wood based energy on the carbon balance in Finland. J For Econ. 2013;19:402–15.
Hudiburg TW, Law BE, Wirth C, Luyssaert S. Regional carbon dioxide implications of forest bioenergy production. Nat Clim Change. 2011;1:419–23.
Heinonen T, Pukkala T, Mehtätalo L, Asikainen A, Kangas J, Peltola H. Scenario analyses for the effects of harvesting intensity on development of forest resources, timber supply, carbon balance and biodiversity of Finnish forestry. For Policy Econ. 2017;80:80–98.
Agreste. Filière forêt-bois Memento 2012; 2012.
François Bessières, René Jean. La forêt privée morcelée. Agreste Primeur; 2001. 4.
Maaf IGN. Indicators for the sustainable management of metropolitan french forests, 2015 edition, Results. Paris: MAAF-IGN; 2016. p. 343.
Forest Europe, FAO, EFI. State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe; 2015. p. 312. http://www.unece.org/fileadmin/DAM/timber/meetings/20151102/ToS_Meeting/8-StEF15-MARTIN.pdf. Accessed 2 Dec 2018.
Roux A, Dhôte JF, Achat D, Bastick C, Colin A, Bailly A, et al. Quel rôle pour les forêts et la filière forêt-bois françaises dans l’atténuation du changement climatique? Une étude des freins et leviers forestiers à l’horizon 2050. INRA; IGN; 2017. p. 101.
Serbruyns I, Luyssaert S. Acceptance of sticks, carrots and sermons as policy instruments for directing private forest management. For Policy Econ. 2006;9:285–96.
Stern T, Weiss G, Bostrom C, Huber W, Koch S, Schwarzbauer P. Identifying measures for wood mobilisation from fragmented forest ownerships based on case studies from eight European Regions. Jahrb Österr Ges Für Agrarökon. 2013;22:19–28.
Militon J, Neveux M. Le bilan de 30 années de plans simples de gestion. Rev For Fr. 1999;51:149–58.
Arbocentre. Etude de motivation des propriétaires forestiers privés en régions Centre et Poitou-Charentes. Orléans, France: MAAPRAT et Région Centre; 2010. Report No.: 09–15.
Mendes A, Štefanek B, Feliciano D, Mizaraite D, Nonic D, Kitchoukov E, et al. Institutional innovation in European private forestry: the emergence of forest owners’ organizations. Weiss G Al. 2011; p. 68–86.
Górriz-Mifsud E, Donazar LO, Eseverri EM, Govigli VM. The challenges of coordinating forest owners for joint management. For Policy Econ. 2017.
Berger F, Dupire S, Monnet J-M, Hainzer E, Stoehr D, Nemestóthy N, et al. Forest logistic planning strategies. Good practices for the Alpine forests. Interreg Alpine Space project—NEWFOR; 2014. p. 111. Report No.: 2-3-2-FR.
Enache A, Kühmaier M, Visser R, Stampfer K. Forestry operations in the European mountains: a study of current practices and efficiency gaps. Scand J For Res. 2016;31:412–27.
Pingoud K, Ekholm T, Soimakallio S, Helin T. Carbon balance indicator for forest bioenergy scenarios. Gcb Bioenergy. 2016;8:171–82.
Schlamadinger B, Spitzer J, Kohlmaier GH, Lüdeke M. Carbon balance of bioenergy from logging residues. Biomass Bioenergy. 1995;8:221–34.
Zanchi G, Pena N, Bird N. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Gcb Bioenergy. 2012;4:761–72.
McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol. 2010;45:789–95.
Schlamadinger B, Marland G. Net effect of forest harvest on CO2 emissions to the atmosphere: a sensitivity analysis on the influence of time. Tellus B Chem Phys Meteorol. 1999;51:314–25.
Yu Y, Chen JM, Yang X, Fan W, Li M, He L. Influence of site index on the relationship between forest net primary productivity and stand age. PLoS ONE. 2017;12:e0177084.
Repo A, Tuomi M, Liski J. Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues. Gcb Bioenergy. 2011;3:107–15.
Lamers P, Junginger M. The ‘debt’is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy. Biofuels Bioprod Biorefin. 2013;7:373–85.
Mitchell SR, Harmon ME, O’connell KE. Carbon debt and carbon sequestration parity in forest bioenergy production. GCB Bioenergy. 2012;4:818–27.
Holtsmark B. The outcome is in the assumptions: analyzing the effects on atmospheric CO2 levels of increased use of bioenergy from forest biomass. Gcb Bioenergy. 2013;5:467–73.
Bentsen NS. Carbon debt and payback time–Lost in the forest? Renew Sustain Energy Rev. 2017;73:1211–7.
Geng A, Yang H, Chen J, Hong Y. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation. For Policy Econ. 2017;85:192–200.
Holtsmark B. Harvesting in boreal forests and the biofuel carbon debt. Clim Change. 2012;112:415–28.
Laganière J, Paré D, Thiffault E, Bernier PY. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests. Gcb Bioenergy. 2017;9:358–69.
Green RE, Cornell SJ, Scharlemann JP, Balmford A. Farming and the fate of wild nature. Science. 2005;307:550–5.
Phalan B, Onial M, Balmford A, Green RE. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science. 2011;333:1289–91.
Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 2012;151:53–9.
Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, et al. Land sparing versus land sharing: moving forward. Conserv Lett. 2014;7:149–57.
Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957.
Dereix C, Lafitte JJ, Puig JP. Mission d’expertise sur les méthodes de l’Inventaire forestier national (IFN). Ministère de l’écologie, du développement durable, des transports et du logement : Ministère de l’agriculture, de l’alimentation, de la pêche, de la ruralite et de l’aménagement du territoire : Ministère de l’économie, des finances et de l’industrie; 2011. p. 126.
IGN. Résultats d’inventaire forestier—Méthodologie - Les résultats des campagnes d’inventaire 2008 à 2012. IGN; 2013.
IGN. Résultats d’inventaire forestier. Les résultats standards des grandes régions écologiques. Les résultats des campagnes d’inventaire 2008 à 2012; 2013. http://inventaire-forestier.ign.fr/spip/spip.php?article831. Accessed 2 Dec 2018.
Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, et al. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manage. 2014;146:69–83.
Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, et al. How strongly can forest management influence soil carbon sequestration? Geoderma. 2007;137:253–68.
Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ. 2014;468:376–83.
Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L. Quantifying consequences of removing harvesting residues on forest soils and tree growth—a meta-analysis. For Ecol Manag. 2015;348:124–41.
Schelhaas M-J, Nabuurs G-J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol. 2003;9:1620–33.
Valade A, Bellassen V, Magand C, Luyssaert S. Sustaining the sequestration efficiency of the European forest sector. For Ecol Manag. 2017;405:44–55.
Profft I, Mund M, Weber G-E, Weller E, Schulze E-D. Forest management and carbon sequestration in wood products. Eur J For Res. 2009;128:399–413.
Alam A, Kilpeläinen A, Kellomäki S. Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems. Eur J For Res. 2012;131:655–67.
Naudts K, Chen Y, McGrath MJ, Ryder J, Valade A, Otto J, et al. Europe’s forest management did not mitigate climate warming. Science. 2016;351:597–600.
Anderson RG, Canadell JG, Randerson JT, Jackson RB, Hungate BA, Baldocchi DD, et al. Biophysical considerations in forestry for climate protection. Front Ecol Environ. 2011;9:174–82.
Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, et al. Protecting climate with forests. Environ Res Lett. 2008;3:044006.
Zhao K, Jackson RB. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol Monogr. 2014;84:329–53.
Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci. 2007;104:6550–5.
Mykleby PM, Snyder PK, Twine TE. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys Res Lett. 2017;44:2493–501.
Betts RA. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature. 2000;408:187.
Wit HA, Bryn A, Hofgaard A, Karstensen J, Kvalevåg MM, Peters GP. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake. Glob Change Biol. 2014;20:2344–55.
Teuling AJ, Taylor CM, Meirink JF, Melsen LA, Miralles DG, Van Heerwaarden CC, et al. Observational evidence for cloud cover enhancement over western European forests. Nat Commun. 2017;8:14065.
Arvesen A, Cherubini F, Serrano GA, Astrup R, Becidan M, Belbo H, et al. Cooling aerosols and changes in albedo counteract warming from CO 2 and black carbon from forest bioenergy in Norway. Sci Rep. 2018;8:3299.
Normandin D, Cinotti B. Exploitants Agricoles et Propriété Forestière: où Est Passée La ‘forêt Paysanne’? Rev For Fr. 2002;54:311–28.
Meyfroidt P, Rudel TK, Lambin EF. Forest transitions, trade, and the global displacement of land use. Proc Natl Acad Sci. 2010;107:20917–22.
Bowman DM, Murphy BP, Boer MM, Bradstock RA, Cary GJ, Cochrane MA, et al. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front Ecol. 2013;11(2):66–7.
Law BE, Hudiburg TW, Luyssaert S. Thinning effects on forest productivity: consequences of preserving old forests and mitigating impacts of fire and drought. Plant Ecol Divers. 2013;6:73–85.
Calder IR. Forests and water—ensuring forest benefits outweigh water costs. For Ecol Manag. 2007;251:110–20.
Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G. Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. For Ecol Manag. 2013;298:39–51.
Barkaoui A. An econometric supply/demand modelling of domestic timber in france. Cah LEF Work Pap Nr. 2007;2007:4.
IGN. Consultation des données brutes [Internet]. Inventaire For. Natl; 2018. https://inventaire-forestier.ign.fr/spip/spip.php?rubrique159. Accessed 3 Feb 2018.
Skovsgaard JP, Vanclay JK. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry. 2008;81:13–32.
Elfving B, Kiviste A. Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. For Ecol Manag. 1997;98:125–34.
Vallet P, Perot T. Tree diversity effect on dominant height in temperate forest. For Ecol Manag. 2016;381:106–14.
Burkhart HE, Tomé M. Modeling Forest Trees and Stands. Berlin: Springer Science & Business Media; 2012.
Pretzsch H, Biber P. A re-evaluation of Reineke’s rule and stand density index. For Sci. 2005;51:304–20.
Condés S, Vallet P, Bielak K, Bravo-Oviedo A, Coll L, Ducey MJ, et al. Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For Ecol Manag. 2017;385:295–307.
Reineke LH. Perfecting a stand-density index for even-aged forests. J Agric Res. 1933;46:627–38.
Tim Coelli, Arne Henningsen. Frontier : stochastic frontier analysis; 2013. http://CRAN.R-Project.org/package=frontier. http://CRAN.R-Project.org/package=frontier.
Bouvet A, Deleuze C. Taux d’écorce pour les principales essences forestières françaises. Rendez-Vous Techniques ONF-July 2013. p. 60–7.
Vannière B. Tables de production pour les forêts françaises. Paris: ENGREF; 1984.
Eggers J, Lindner M, Zudin S, Zaehle S, Liski J. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Glob Change Biol. 2008;14:2288–303.
Agreste. Récolte de bois et production de sciages en 2012. Agreste Primeur; 2014.
Agreste. Production de sciages, bois sous rails et merrains en France métropolitaine de 2005 à 2015. Agreste; 2016. http://agreste.agriculture.gouv.fr/IMG/xls/donnees_bois2016T2bssef.xls. Accessed 2 Dec 2018.
Agreste. Récolte de bois en France métropolitaine de 2005 à 2015. Agreste; 2016. http://agreste.agriculture.gouv.fr/IMG/pdf/bois2016T1bssef.pdf. Accessed 5 July 2016.
Colin A, Thivolle-Cazat A, Coulon F, Christian C. Biomasse forestière, populicole et bocagère disponible pour l’énergie à l’horizon 2020. Angers : ADEME: FCBA-IFN-SOLAGRO; 2009 Nov p. 105.
Eggers T. The Impacts of manufacturing and utilisation of wood products on the european carbon budget—internal Report 9. European Forest Institute; 2002.
Franqueville C. Mission relative aux exportations de grumes et au déséquilibre de la balance commerciale de la filière forêt-bois française; 2015.
Guinard L, Deroubaix G, Roux ML, Levet AL, Quint V. Evaluation du gisement de déchets bois et son positionnement dans la filière bois/bois énergie. Angers: ADEME; 2015. p. 19. Report No.: 1302C0059.
IGN. La forêt en chiffres et en cartes. Le mémento. Saint-Mandé: Institut national de; 2016.
Loustau D. Rapport final du projet CARBOFOR. Séquestration de Carbone dans les grands écosystèmes forestiers en France. Quantification, spatialisation, vulnérabilité et impacts des différents scénarios climatiques et sylvicoles. Bordeaux; 2004. Report No.: GIP ECOFOR n°3/2001.
Fortin M, Ningre F, Robert N, Mothe F. Quantifying the impact of forest management on the carbon balance of the forest-wood product chain: a case study applied to even-aged oak stands in France. For Ecol Manag. 2012;279:176–88.
ADEME. Forêt et atténuation du changement climatique; 2015.