Mac Dowell, 2010, Energy Environ. Sci., 3, 1645, 10.1039/c004106h
Boot-Handford, 2014, Energy Environ. Sci., 7, 130, 10.1039/C3EE42350F
COP21 Paris Agreement , European Commission, http://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm
GCCSI, Large-scale CCS projects , Global CCS Institute, http://www.globalccsinstitute.com/projects/large-scale-ccs-projects , accessed July 2017
BEIS, UK carbon capture and storage: Government funding and support , Department for Business, Energy & Industrial Strategy (BEIS), London, UK, https://www.gov.uk/guidance/uk-carbon-capture-and-storage-government-funding-and-support , accessed June 2017
IPCC , Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA , 2014
A. Cousins , L.Wardhaugh and A.Cottrell , Pilot plant operation for liquid absorption-based post-combustion CO2 capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge, UK , 2016 , pp. 649–684
R. Sanchez , Technology Readiness Assessment Guide , U.S. Department of Energy , Washington, DC , 2011 , https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1
GCCSI , CO2 capture technologies: Technology options for CO2 capture , Global CCS Institute , Canberra, Australia , 2012 , https://www.globalccsinstitute.com/publications/technology-options-co2-capture
NDA , Guide to Technology Readiness Levels for the NDA Estate and its Supply Chain , Nuclear Decommissioning Authority , Cumbria, UK , 2014 , https://www.gov.uk/government/news/guidance-on-technology-readiness-levels
Campbell, 2014, Energy Procedia, 63, 801, 10.1016/j.egypro.2014.11.090
Singh, 2014, Energy Procedia, 63, 1678, 10.1016/j.egypro.2014.11.177
DOE, Petra Nova – W.A. Parish Project, Office of Fossil Energy, U.S. Department of Energy (DOE), http://energy.gov/fe/petra-nova-wa-parish-project , accessed May 2017
MIT, Petra Nova W.A. Parish Fact Sheet: Carbon Dioxide Capture and Storage Project , Carbon Capture and Sequestration Technologies program at MIT, 2016, https://sequestration.mit.edu/tools/projects/wa_parish.html
MTR, PolarisTM membrane: CO2 removal from syngas , Membrane Technology & Research, http://www.mtrinc.com/co2_removal_from_syngas.html , accessed June 2017
Chemical Processing, Air Products and NTNU Enter Licensing Agreement for Carbon Capture Technology , 2017
J. Owen-Jones , Grand opening of Climeworks commercial DAC plant , Gasworld, 2017, https://www.gasworld.com/grand-opening-worlds-first-dac-plant/2012895.article
Climeworks, Climeworks launches world's first commercial plant to capture CO 2 from air , Press Release, 2017, http://www.climeworks.com/wp-content/uploads/2017/05/01_PR-Climeworks-DAC-Plant-Opening.pdf
D. Wagman , The three factors that doomed Kemper County IGCC, IEEE Spectrum , 2017, http://spectrum.ieee.org/energywise/energy/fossil-fuels/the-three-factors-that-doomed-kemper-county-igcc , accessed July 2017
Mississippi Power, Mississippi Power issues statement regarding Kemper County energy facility progress and schedule , MississippiPower News Center, http://mississippipowernews.com/2017/02/22/mississippi-power-issues-statement-regarding-kemper-county-energy-facility-progress-and-schedule-2/ , accessed May 2017
K. E. Swartz , Southern Co.'s clean coal plant hits a dead end, E&E News - Energywire , 2017, https://www.eenews.net/stories/1060056418 , accessed July 2017
P. Noothout , F.Wiersma , O.Hurtado , P.Roelofsen and D.Macdonald , CO2 Pipeline Infrastructure, IEA Greenhouse Gas R&D Programme (IEAGHG) , 2014, http://ieaghg.org/docs/General_Docs/Reports/2013-18.pdf
P. Brownsort , Ship transport of CO2 for Enhanced Oil Recovery-Literature survey , January, Scottish Carbon Capture & Storage (SCCS)
Gou, 2014, Acta Geotechnica, 9, 49, 10.1007/s11440-013-0221-z
GCCSI, Projects Database: CO 2 utilisation , Global CCS Institute, https://www.globalccsinstitute.com/projects/co2-utilisation-projects , accessed July 2017
GCCSI, Saga City Waste Incineration Plant , Global CCS Institute, 2016, http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/content/page/122975/files/Saga%20City%20Waste%20Incineration%20Plant_0.pdf
GCCSI, Strategic analysis of the global status of carbon capture and storage. Report 1: Status of carbon capture and storage projects globally , Global CCS Institute, 2009
D. van Vuuren , E.Kriegler , K.Riahi , M.Tavoni , B. S.Koelbl and M.van Sluisveld , The use of carbon capture and storage in mitigation scenarios—An integrated assessment modelling perspective. Our Common Future Under Climate Change , International Scientific Conference , Paris, France , 2015
Benhelal, 2013, J. Cleaner Prod., 51, 142, 10.1016/j.jclepro.2012.10.049
Fuss, 2014, Nat. Clim. Change, 4, 850, 10.1038/nclimate2392
F. Kraxner , S.Fuss , V.Krey , D.Best , S.Leduc , G.Kindermann , Y.Yamagata , D.Schepaschenko , A.Shvidenko , K.Aoki and J.Yan , The role of bioenergy with carbon capture and storage (BECCS) for climate policy , John Wiley & Sons, Ltd , UK , 2015 , vol. 3, pp. 1465–1484
Koelbl, 2014, Clim. Change, 123, 461, 10.1007/s10584-013-1050-7
C. Hendriks , W.Graus and F.van Bergen , Global carbon dioxide storage potential and costs, Ecofys and TNO , Utrecht, The Netherlands , 2004 , http://www.ecofys.com/files/files/ecofys_2004_globalcarbondioxidestorage.pdf
Riahi, 2004, Energy Econ., 26, 539, 10.1016/j.eneco.2004.04.024
Kurosawa, 2004, Energy Econ., 26, 675, 10.1016/j.eneco.2004.04.022
Scott, 2013, Nat. Clim. Change, 3, 105, 10.1038/nclimate1695
van Noorden, 2013, Nature, 493, 141, 10.1038/493141a
Reiner, 2016, Nat. Energy, 1, 15011, 10.1038/nenergy.2015.11
T. Spencer , R.Pierfederici , H.Waisman , M.Colombier , C.Bertram , E.Kriegler , G.Luderer , F.Humpenöder , A.Popp , O.Edenhofer , M. D.Elzen , D.van Vuuren , H.van Soest , L.Paroussos , P.Fragkos , M.Kainuma , T.Masui , K.Oshiro , K.Akimoto , B. S.Tehrani , F.Sano , J.Oda , L.Clarke , G.Iyer , J.Edmonds , T.Fei , F.Sha , J.Kejun , A. C.Köberle , A.Szklo , A. F. P.Lucena , J.Portugal-Pereira , P.Rochedo , R.Schaeffe , A.Awasthy , M. K.Shrivastava , R.Mathur , J.Rogelj , J.Jewell , K.Riah , A.Garg and I. M. P. Consortium , Beyond the numbers: Understanding the transformation induced by INDCs. Study Number 05/15 , IDDRI – MILES Project Consortium , Paris, France , 2015
IEA , 20 Years of carbon capture and storage: Accelerating future deployment , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA) , Paris, France , 2016
Upham, 2011, Int. J. Greenhouse Gas Control, 5, 1359, 10.1016/j.ijggc.2011.06.005
Reiner, 2006, Environ. Sci. Technol., 40, 2093, 10.1021/es052010b
Löschel, 2002, Ecol. Econ., 43, 105, 10.1016/S0921-8009(02)00209-4
IPCC , in Climate Change 2014: Synthesis Report of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , ed. Core Writing Team , R. K. Pachauri and L. Meyer , Intergovernmental Panel on Climate Change (IPCC) , 2014
Peters, 2015, Environ. Res. Lett., 10, 105004, 10.1088/1748-9326/10/10/105004
GCP, Global Carbon Budget 2016 , Global Carbon Project, 2016, http://www.globalcarbonproject.org/carbonbudget/16/files/GCP_CarbonBudget_2016.pdf
Le Quéré, 2016, Earth Syst. Sci. Data, 8, 605, 10.5194/essd-8-605-2016
Azar, 2010, Clim. Change, 100, 195, 10.1007/s10584-010-9832-7
Heuberger, 2016, Energy Environ. Sci., 9, 2497, 10.1039/C6EE01120A
Heuberger, 2017, Comput. Chem. Eng., 107, 247, 10.1016/j.compchemeng.2017.05.012
Riahi, 2015, Technol. Forecase. Soc., 90, 8, 10.1016/j.techfore.2013.09.016
Peters, 2016, Nat. Clim. Change, 6, 646, 10.1038/nclimate3000
UNFCCC , Adoption of the Paris Agreement , United Nations Framework Convention on Climate Change (UNFCCC), Paris, France , 2015, http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf , accessed December 2016
Rogelj, 2015, Nat. Clim. Change, 5, 519, 10.1038/nclimate2572
Luderer, 2013, Environ. Res. Lett., 8, 34033, 10.1088/1748-9326/8/3/034033
Smith, 2016, Global Change Biol., 22, 1315, 10.1111/gcb.13178
DeVries, 2017, Nature, 542, 215, 10.1038/nature21068
Eisaman, 2012, Energy Environ. Sci., 5, 7346, 10.1039/c2ee03393c
Willauer, 2014, Ind. Eng. Chem. Res., 53, 12192, 10.1021/ie502128x
Smith, 2016, Nat. Clim. Change, 6, 42, 10.1038/nclimate2870
FAO , Land under cereal production (hectares) , Food and Agriculture Organization, The World Bank Group, http://data.worldbank.org/indicator/AG.LND.CREL.HA , accessed July 2017
Fajardy, 2017, Energy Environ. Sci., 10, 1389, 10.1039/C7EE00465F
T. Bruckner , I. A.Bashmakov , Y.Mulugetta , H.Chum , A.de la Vega Navarro , J.Edmonds , A.Faaij , B.Fungtammasan , A.Garg , E.Hertwich , D.Honnery , D.Infield , M.Kainuma , S.Khennas , S.Kim , H. B.Nimir , K.Riahi , N.Strachan , R.Wiser and X.Zhang , Energy Systems , in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press , 2014
IPCC , Proposed outline of the IPCC special report on the impacts of global warming of 1.5 °C , Forty-fourth session of the Intergovernmental Panel on Climate Change (IPCC) , Bangkok, Thailand , 2016
J. Strefler , N.Bauer , T.Amann , E.Kriegler and J.Hartmann , Enhanced weathering and BECCS-are carbon dioxide removal technologies complements or substitutes? International Energy Workshop, 2015
House, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 20428, 10.1073/pnas.1012253108
Kraxner, 2014, Renewable Energy, 61, 102, 10.1016/j.renene.2012.09.064
Clack, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6722, 10.1073/pnas.1610381114
Fuss, 2016, Environ. Res. Lett., 11, 115007, 10.1088/1748-9326/11/11/115007
C. F. Heuberger , I.Staffell , N.Shah and N.Mac Dowell , Levelised value of technology-A systemic approach to technology valuation, 26th European Symposium on Computer Aided Process Engineering (ESCAPE 26) , Computer Aided Chemical Engineering 38, 2016 , pp. 721–726
G. Strbac , M.Aunedi , D.Pudjianto , P.Djapic , S.Gammons and R.Druce , Understanding the Balancing Challenge, report for the Department of Energy and Climate Change (DECC) , Imperial College London and NERA Economic Consulting , London, UK , 2012
G. Strbac , M.Aunedi , D.Pudjianto , P.Djapic , F.Teng , A.Sturt , D.Jackravut , R.Sansom , V.Yufit and N.Brandon , Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future , Energy Futures Lab, Imperial College London, 2012, https://www.carbontrust.com/media/129310/energy-storage-systems-role-value-strategic-assessment.pdf
Pudjianto, 2014, IEEE Trans. Smart Grid, 5, 1098, 10.1109/TSG.2013.2282039
Richels, 2008, Energy Econ., 30, 2930, 10.1016/j.eneco.2008.06.005
Nelson, 2012, Energy Policy, 43, 436, 10.1016/j.enpol.2012.01.031
Koltsaklis, 2014, Appl. Energy, 115, 456, 10.1016/j.apenergy.2013.10.042
Wierzbowski, 2016, Appl. Energy, 169, 93, 10.1016/j.apenergy.2016.02.003
Green, 2016, Oxford Review of Economic Policy, 32, 282, 10.1093/oxrep/grw003
Climate Change Act, Part 1: Carbon target and budgeting , Parliament of the United Kingdom, 2008, http://www.legislation.gov.uk/ukpga/2008/27/pdfs/ukpga_20080027_en.pdf
Energy Act 2013 – Chapter 32, Department of Energy & Climate Change , Parliament of the United Kingdom, 2013
CCC, Fourth carbon budget review – Part 2: The cost-effective path to the 2050 target , Committee on Climate Change (CCC), London, UK, 2013, https://www.theccc.org.uk/wp-content/uploads/2013/12/1785a-CCC_AdviceRep_Singles_1.pdf
CCC, The Fifth Carbon Budget: The next step towards a low-carbon economy , Committee on Climate Change (CCC), London, UK, 2015, https://www.theccc.org.uk/wp-content/uploads/2015/11/Committee-on-Climate-Change-Fifth-Carbon-Budget-Report.pdf
CCC, Sectoral scenarios for the Fifth Carbon Budget: Technical report , Committee on Climate Change (CCC), London, UK, 2015, https://www.theccc.org.uk/wp-content/uploads/2015/11/Sectoral-scenarios-for-the-fifth-carbon-budget-Committee-on-Climate-Change.pdf
CCC, Meeting Carbon Budgets-2016 Progress Report to Parliament , Committee on Climate Change, London, UK, 2016, https://www.theccc.org.uk/publication/meeting-carbon-budgets-2016-progress-report-to-parliament/
House of Lords, The EU's Target forRenewable Energy: 20% by 2020, 27th report of session 2007–08 , European Union Committee, House of Lords, London, UK, 2008, https://www.publications.parliament.uk/pa/ld200708/ldselect/ldeucom/175/175.pdf
2Co Energy, Making the business case for CCS , Global CCS Institute, 2Co Energy, European Union, 2012, http://www.globalccsinstitute.com/publications/making-business-case-ccs
BEIS , Digest of United Kingdom energy statistics 2016 , National Statistics, Department for Business, Energy & Industrial Strategy, London, UK , 2016
CCC , Power sector scenarios for the fifth carbon budget , Committee on Climate Change (CCC), London, UK , 2015, https://www.theccc.org.uk/publication/power-sector-scenarios-for-the-fifth-carbon-budget/
Page, 2016, i-manager's Journal on Power Systems Engineering, 4, 1
Jacobson, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 15060, 10.1073/pnas.1510028112
F. Genoese , E.Drabik and C.Egenhofer , The EU power sector needs long-term price signals, Special report number 135 , Centre for European Policy Studies (CEPS) Energy Climate House , Brussels, Belgium , 2016
R. Gross , P.Heptonstall , D.Anderson , T.Green , M.Leach and J.Skea , The costs and impacts of intermittency: An assessment of the evidence on the costs and impacts of intermittent generation on the British electricity network , UK Energy Research Centre, Imperial College London, UK , 2006, http://www.ukerc.ac.uk/programmes/technology-and-policy-assessment/the-intermittency-report.html
A. Boston and H. K.Thomas , Managing flexibility whilst decarbonising the GB electricity system, Energy Research Partnership , London, UK , 2015, http://erpuk.org/project/managing-flexibility-of-the-electricity-sytem/
K. Foy , Electricity Generation Cost Model – 2013 Update of Non-Renewable Technologies, Report number 3512649A , Parsons Brinckerhoff, Prepared for Department of Energy and Climate Change (DECC) , UK , 2013
J. Munro and H.Windebank , Electricity Generation Costs Model – 2013 Update of Renewable Technologies, Report number 3511633B , Parsons Brinckerhoff, Prepared for Department of Energy and Climate Change (DECC) , UK , 2013
DECC , Oral statement to parliament: Agreement reached on new nuclear power station at Hinkley , Department of Energy & Climate Change (DECC), UK , 2013, https://www.gov.uk/government/speeches/agreement-reached-on-new-nuclear-power-station-at-hinkley
DECC , Press release: Initial agreement reached on new nuclear power station at Hinkley , Department of Energy & Climate Change (DECC), UK , 2013, https://www.gov.uk/government/news/initial-agreement-reached-on-new-nuclear-power-station-at-hinkley
Ofgem, Renewables Obligation (RO) , https://www.ofgem.gov.uk/environmental-programmes/ro , accessed October 2016
E. Durusut , S.Slater , S.Murray and P.Hare , CCS Sector Development Scenarios in the UK, Final report prepared for the Energy Technologies Institute , Element Energy and Pöyry, 2015, http://www.eti.co.uk/library/ccs-sector-development-scenarios-in-the-uk
R. Oxburgh , Lowest cost decarbonisation for the UK: The critical role of CCS , Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS), 2016
Elexon, Electricity generation data for Great Britain from the National Grid, reported during 2012 , 2014
JRC , Photovoltaic geographic information system, web tool for photovoltaic output , European Commission, Joint Research Centre (JRC), Brussels, Belgium , 2014, http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
National Grid, UK Future Energy Scenarios – July 2013 edition , Warwick, UK, 2013, http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=10451
DECC, National Renewable Energy Action Plan for the United Kingdom, Article 4 of the Renewable Energy Directive 2009/28/EC , Department of Energy & Climate Change, United Kingdom, 2009
Haines, 2009, Energy Procedia, 1, 1457, 10.1016/j.egypro.2009.01.191
Chalmers, 2007, Fuel, 86, 2109, 10.1016/j.fuel.2007.01.028
Cohen, 2012, Int. J. Greenhouse Gas Control, 8, 180, 10.1016/j.ijggc.2012.02.011
Patiño-Echeverri, 2012, Environ. Sci. Technol., 46, 1243, 10.1021/es202164h
van der Wijk, 2014, Int. J. Greenhouse Gas Control, 28, 216, 10.1016/j.ijggc.2014.06.014
Van Peteghem, 2014, Int. J. Greenhouse Gas Control, 21, 203, 10.1016/j.ijggc.2013.12.010
Mac Dowell, 2015, Comput. Chem. Eng., 74, 169, 10.1016/j.compchemeng.2015.01.006
Mechleri, 2017, Int. J. Greenhouse Gas Control, 59, 24, 10.1016/j.ijggc.2016.09.018
Tranier, 2011, Energy Procedia, 4, 966, 10.1016/j.egypro.2011.01.143
Hu, 2013, Appl. Energy, 112, 747, 10.1016/j.apenergy.2012.12.001
C. F. Heuberger , I.Staffell , N.Shah and N.Mac Dowell , Valuing Flexibility in CCS Power Plant. Final report on the FlexEVAL project , International Energy Agency Greenhouse Gas R&D Programme (IEAGHG), 2017, http://www.ieaghg.org/exco_docs/2017-09.pdf
J. P. Birat , Steel sectoral report, contribution to the UNIDO roadmap on CCS (fifth draft). Prepared for the UNIDO Global Technology Roadmap for CCS in Industry-Sectoral Experts Meeting in Amsterdam, 24 September 2010 , 2010
A. Carpenter , CO2 abatement in the iron and steel industry, report CCC/193 , IEA Clean Coal Centre, London, UK , 2012
GCCSI, Global status of CCS. Special report: Introduction to industrial carbon capture and storage , Global CCS Institute, Melbourne, Australia, 2016
D. Leeson , P.Fennell , N.Shah , C.Petit and N.Mac Dowell , A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries. 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland. Energy Procedia, 2016
Leeson, 2017, Int. J. Greenhouse Gas Control, 61, 71, 10.1016/j.ijggc.2017.03.020
Napp, 2014, Renewable Sustainable Energy Rev., 30, 616, 10.1016/j.rser.2013.10.036
IEA and UNIDO, Technology roadmap: Carbon capture and storage in industrial applications , International Energy Agency and United Nations Industrial Development Organisation, 2011, http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf , accessed February 2017
M. Bui , I.Gunawan , V.Verheyen and E.Meuleman , Dynamic operation of liquid absorbent-based postcombustion CO2 capture plants , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 589–621
N. Mahasenan and D. R.Brown , Beyond the big picture: Characterizaton of CO 2 -laden streams and implications for capture technologies, 7th International Conference on Greenhouse Gas Control Technologies, Oxford, UK, 2005, pp. 1817–1820
Hasan, 2012, Ind. Eng. Chem. Res., 51, 15642, 10.1021/ie301571d
Hasan, 2012, Ind. Eng. Chem. Res., 51, 15665, 10.1021/ie301572n
Fais, 2016, Appl. Energy, 162, 699, 10.1016/j.apenergy.2015.10.112
Arasto, 2013, Int. J. Greenhouse Gas Control, 16, 271, 10.1016/j.ijggc.2012.08.018
Wiley, 2011, Energy Procedia, 4, 2654, 10.1016/j.egypro.2011.02.165
Tsupari, 2013, Int. J. Greenhouse Gas Control, 16, 278, 10.1016/j.ijggc.2012.08.017
Kuramochi, 2012, Prog. Energy Combust. Sci., 38, 87, 10.1016/j.pecs.2011.05.001
Pardo, 2013, Energy, 54, 113, 10.1016/j.energy.2013.03.015
Porzio, 2013, Appl. Energy, 112, 818, 10.1016/j.apenergy.2013.05.005
Brunke, 2014, Energy Policy, 67, 431, 10.1016/j.enpol.2013.12.024
Karali, 2014, Appl. Energy, 120, 133, 10.1016/j.apenergy.2014.01.055
Moya, 2013, J. Cleaner Prod., 52, 71, 10.1016/j.jclepro.2013.02.028
J. P. Birat , Carbon dioxide (CO2) capture and storage technology in the iron and steel industry , in Developments and innovation in carbon dioxide (CO2) capture and storage technology, Carbon dioxide (CO2) capture, transport and industrial applications , Woodhead Publishing Ltd. , Cambridge, UK , 2010 , vol. 1
Kuramochi, 2011, Energy Procedia, 4, 1981, 10.1016/j.egypro.2011.02.079
Posco and Primetals Technologies, The Finex process: Economic and environmentally safe ironmaking , Posco Ltd. (Incheon, South Korea) and Primetals Technologies Ltd. (Linz, Austria), 2015, http://primetals.com/en/technologies/ironmaking/finex% C2%AE/Lists/FurtherInformation/The%20Finex%20process.pdf , accessed March 2017
K. Meijer , C.Guenther and R. J.Dry , HIsarna Pilot Plant Project , METEC Conference, Germany, 2011, http://www.riotinto.com/documents/_Iron%20Ore/HIsarna_0711_METEC_Conference.pdf
J. van der Stel , K.Meijer , C.Teerhuis , C.Zeijlstra , G.Keilman and M.Ouwehand , Update to the Developments of HIsarna: An ULCOS alternative ironmaking process , IEAGHG/IETS Iron and steel industry CCUS and process integration workshop, IEA Greenhouse Gas R&D Programme, 2013
GCCSI, Abu Dhabi CCS Project (Phase 1 being Emirates Steel Industries (ESI) CCS Project) , Global CCS Institute, 2016, https://www.globalccsinstitute.com/projects/abu-dhabi-ccs-project-phase-1-being-emirates-steel-industries-esi-ccs-project
Globalcement.com, CEMENT 101-An introduction to the World's most important building material , accessed February 2017
Hills, 2016, Environ. Sci. Technol., 50, 368, 10.1021/acs.est.5b03508
Dean, 2011, Chem. Eng. Res. Des., 89, 836, 10.1016/j.cherd.2010.10.013
Dean, 2011, Energy Environ. Sci., 4, 2050, 10.1039/c1ee01282g
IEA, Global action to advance carbon capture and storage: A focus on industrial applications-Annex to tracking clean energy progress , International Energy Agency, 2013, https://www.iea.org/publications/freepublications/publicat ion/CCS_Annex.pdf
O. Graff , CCS in Aker Solutions with focus on cement industry , Norcem International CCS Conference, 2015
Zeman, 2006, International Cement Review, 55
ECRA, TR-ECRA-119/2012 Technical Report on Phase III of ECRA CCS Project , European Cement Research Academy, 2012, https://www.ecra-online.org/fileadmin/redaktion/files/pdf/ECRA_Technical_Report_CCS_Phase_III.pdf , accessed 15/02/17
Zheng, 2016, Faraday Discuss., 192, 113, 10.1039/C6FD00032K
Dean, 2013, Energy Procedia, 37, 7078, 10.1016/j.egypro.2013.06.644
Telesca, 2014, Fuel, 118, 202, 10.1016/j.fuel.2013.10.060
T. Hills , M.Sceats , D.Rennie and P.Fennell , LEILAC: Low cost CO 2 capture for the cement and lime industries, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland, Energy Procedia, 2016
S. Evans , Around the world in 22 carbon capture projects, CarbonBrief Clear on Climate, 2014, https://www.carbonbrief.org/around-the-world-in-22-carbon-capture-projects
Barker, 2009, Energy Procedia, 1, 87, 10.1016/j.egypro.2009.01.014
Romano, 2014, Energy Procedia, 61, 500, 10.1016/j.egypro.2014.11.1158
Romano, 2013, Energy Procedia, 37, 7091, 10.1016/j.egypro.2013.06.645
Liang, 2012, Energy Convers. Manage., 64, 454, 10.1016/j.enconman.2012.04.012
DECC, Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050 , prepared by Parsons Brinkerhoff and DNV GL for UK Departments of Energy and Climate Change and Business, Innovation and Skills, 2015
T. A. Napp , K. S.Sum , T.Hills and P.Fennell , Attitudes and barriers to deployment of CCS from industrial sources in the UK-Grantham Report 6 , Grantham Institute for Climate Change, Imperial College London, 2014, https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/institute-reports-and-analytical-notes/Attitudes-and-Barriers-to-CCS-GR6.pdf
Bjerge, 2014, Energy Procedia, 63, 6455, 10.1016/j.egypro.2014.11.680
Chang, 2014, Energy Procedia, 63, 2100, 10.1016/j.egypro.2014.11.226
M. Schneider , ECRA's Oxyfuel project , Norcem International CCS Conference, Langesund, Norway , 2015
OGCI, Oil and Gas Climate Initiative (OGCI) , accessed January 2017
S. Nyquist and J.Ruys , CO 2 abatement: Exploring options for oil and natural gas companies , McKinsey & Company: Oil & Gas, 2010, http://www.mckinsey.com/industries/oil-and-gas/our-insights/co2-abatement-exploring-options-for-oil-and-natural-gas-companies
Macrotrends, Crude Oil Prices-70 Year Historical Chart , accessed January 2017
Guilford, 2011, Sustainability, 3, 1866, 10.3390/su3101866
Bredeson, 2010, Int. J. Life Cycle Assess., 15, 817, 10.1007/s11367-010-0204-3
I. Palou-Rivera , J.Han and M.Wang , Updates to petroleum refining and upstream emissions , Center for Transportation Research Argonne National Laboratory, 2011, https://greet.es.anl.gov/files/petroleum , accessed January 2017
K. Harland , H.Pershad , S.Slater , G.Cook and J.Watt , Potential for the application of CCS to UK industry and natural gas power generation. Final report, Issue 3, prepared for Committee on Climate Change , Element Energy Limited, Cambridge UK, 2010, http://www.element-energy.co.uk/wordpress/wp-content/uploads/2012/05/CCS_on_gas_and_industry_2010.pdf
Parsons Brinckerhoff and DNV GL, Industrial decarbonisation & energy efficiency roadmaps to 2050-Oil refining , prepared for the Department of Energy and Climate Change and the Department for Business, Innovation and Skills, 2015, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416671/Oil_Refining_Report.pdf
Andersson, 2016, Int. J. Greenhouse Gas Control, 45, 130, 10.1016/j.ijggc.2015.12.019
Escudero, 2016, Int. J. Greenhouse Gas Control, 45, 118, 10.1016/j.ijggc.2015.12.018
Adánez, 2009, Ind. Eng. Chem. Res., 48, 2509, 10.1021/ie8013346
Shah, 2016, Chem. Eng. Res. Des., 111, 403, 10.1016/j.cherd.2016.04.017
Song, 2014, Adv. Mater. Res., 864–867, 1725
F. Untalan , Australia signs contract with Japan to ship hydrogen , International Business Times, http://www.ibtimes.com.au/australia-signs-contract-japan-ship-hydrogen-1539612 , January 2017
A. Kohl and R.Nielsen , Gas Purification , Gulf Publishing Company , Houston, Texas , 5th edn, 1997
Cousins, 2012, Greenhouse Gases: Sci. Technol., 2, 329, 10.1002/ghg.1295
Kwak, 2012, Energy, 47, 41, 10.1016/j.energy.2012.07.016
Mangalapally, 2011, Chem. Eng. Res. Des., 89, 1216, 10.1016/j.cherd.2011.01.013
Stec, 2016, Clean Technol. Environ. Policy, 18, 151, 10.1007/s10098-015-1001-2
Mangalapally, 2011, Chem. Eng. Sci., 66, 5512, 10.1016/j.ces.2011.06.054
Rabensteiner, 2016, Int. J. Greenhouse Gas Control, 51, 106, 10.1016/j.ijggc.2016.04.035
Heldebrant, 2017, Chem. Rev., 117, 9594, 10.1021/acs.chemrev.6b00768
SaskPower, The world's first post-combustion coal-fired CCS facility , http://www.saskpowerccs.com , accessed October 2016
G. Puxty and M.Maeder , The fundamentals of post combustion capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 13–33
Xu, 1992, Ind. Eng. Chem. Res., 31, 921, 10.1021/ie00003a038
Freeman, 2010, Int. J. Greenhouse Gas Control, 4, 119, 10.1016/j.ijggc.2009.10.008
Rochelle, 2011, Chem. Eng. J., 171, 725, 10.1016/j.cej.2011.02.011
Dugas, 2011, J. Chem. Eng. Data, 56, 2187, 10.1021/je101234t
Dash, 2011, Fluid Phase Equilib., 300, 145, 10.1016/j.fluid.2010.11.004
Freeman, 2010, Int. J. Greenhouse Gas Control, 4, 756, 10.1016/j.ijggc.2010.03.009
Cousins, 2015, Greenhouse Gases: Sci. Technol., 5, 7, 10.1002/ghg.1462
Cousins, 2015, Int. J. Greenhouse Gas Control, 37, 256, 10.1016/j.ijggc.2015.03.007
Dai, 2012, Environ. Sci. Technol., 46, 9793, 10.1021/es301867b
Hikita, 1977, Chem. Eng. J., 14, 27, 10.1016/0300-9467(77)80019-1
Li, 2007, Ind. Eng. Chem. Res., 46, 4426, 10.1021/ie0614982
Weiland, 1971, Can. J. Chem. Eng., 49, 767, 10.1002/cjce.5450490610
Zhou, 2010, ChemSusChem, 3, 913, 10.1002/cssc.200900293
Nguyen, 2010, Int. J. Greenhouse Gas Control, 4, 707, 10.1016/j.ijggc.2010.06.003
Rabensteiner, 2014, Int. J. Greenhouse Gas Control, 27, 1, 10.1016/j.ijggc.2014.05.002
Lemaire, 2014, Oil Gas Sci. Technol., 69, 1069, 10.2516/ogst/2013153
Ballerat-Busserolles, 2014, Pure Appl. Chem., 86, 233, 10.1515/pac-2014-5017
Conway, 2014, Ind. Eng. Chem. Res., 53, 16715, 10.1021/ie503195x
Coulier, 2016, Int. J. Greenhouse Gas Control, 47, 322, 10.1016/j.ijggc.2016.02.009
Dubois, 2012, Chem. Eng. Technol., 35, 513, 10.1002/ceat.201100523
Liu, 2016, Int. J. Greenhouse Gas Control, 50, 206, 10.1016/j.ijggc.2016.04.020
Sherman, 2016, Chem. Eng. Sci., 153, 295, 10.1016/j.ces.2016.07.019
Vaidya, 2014, Can. J. Chem. Eng., 92, 2218, 10.1002/cjce.22061
Sartori, 1983, Ind. Eng. Chem. Fundam., 22, 239, 10.1021/i100010a016
Seo, 2000, Ind. Eng. Chem. Res., 39, 2062, 10.1021/ie990846f
Yang, 2010, J. Chem. Thermodyn., 42, 659, 10.1016/j.jct.2009.12.006
Khan, 2016, Int. J. Greenhouse Gas Control, 44, 217, 10.1016/j.ijggc.2015.11.020
Bruder, 2011, Chem. Eng. Sci., 66, 6193, 10.1016/j.ces.2011.08.051
Bougie, 2014, Int. J. Greenhouse Gas Control, 29, 16, 10.1016/j.ijggc.2014.07.008
Wang, 2014, Int. J. Greenhouse Gas Control, 24, 98, 10.1016/j.ijggc.2014.03.003
Li, 1993, Fluid Phase Equilib., 85, 129, 10.1016/0378-3812(93)80008-B
Shen, 1992, J. Chem. Eng. Data, 37, 96, 10.1021/je00005a025
Edali, 2009, Int. J. Greenhouse Gas Control, 3, 550, 10.1016/j.ijggc.2009.04.006
Naami, 2013, Int. J. Greenhouse Gas Control, 19, 3, 10.1016/j.ijggc.2013.08.008
Ramachandran, 2006, Ind. Eng. Chem. Res., 45, 2608, 10.1021/ie0505716
Sema, 2012, Chem. Eng. J., 209, 501, 10.1016/j.cej.2012.08.016
Lawal, 2005, Ind. Eng. Chem. Res., 44, 1874, 10.1021/ie049261y
Idem, 2006, Ind. Eng. Chem. Res., 45, 2414, 10.1021/ie050569e
Nwaoha, 2016, J. Nat. Gas Sci. Eng., 33, 742, 10.1016/j.jngse.2016.06.002
L. V. van der Ham , E. L. V.Goetheer , E. S.Fernandez , M. R. M.Abu-Zahra and T. J. H.Vlugt , Precipitating amino acid solutions , Absorption-Based Post-combustion Capture of Carbon Dioxide, Woodhead Publishing , Cambridge , 2016 , pp. 103–119
S. Wang and Z.Xu , Dual-liquid phase systems , Absorption-Based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 201–223
Sakwattanapong, 2005, Ind. Eng. Chem. Res., 44, 4465, 10.1021/ie050063w
Darde, 2009, Energy Procedia, 1, 1035, 10.1016/j.egypro.2009.01.137
Dave, 2009, Energy Procedia, 1, 949, 10.1016/j.egypro.2009.01.126
Yang, 2014, Ind. Eng. Chem. Fundam., 69, 931
Anderson, 2013, Energy Procedia, 37, 225, 10.1016/j.egypro.2013.05.106
Anderson, 2014, Energy Procedia, 63, 1773, 10.1016/j.egypro.2014.11.184
Smith, 2014, Energy Fuels, 28, 299, 10.1021/ef4014746
Sanchez-Fernandez, 2014, Energy Procedia, 63, 727, 10.1016/j.egypro.2014.11.080
Sanchez-Fernandez, 2014, Ind. Eng. Chem. Res., 53, 2348, 10.1021/ie402323r
Raynal, 2011, Energy Procedia, 4, 779, 10.1016/j.egypro.2011.01.119
Liebenthal, 2013, Energy Procedia, 37, 1844, 10.1016/j.egypro.2013.06.064
Ahn, 2011, Int. J. Greenhouse Gas Control, 5, 1606, 10.1016/j.ijggc.2011.09.007
Darde, 2010, Int. J. Greenhouse Gas Control, 4, 131, 10.1016/j.ijggc.2009.10.005
Mathias, 2010, Int. J. Greenhouse Gas Control, 4, 174, 10.1016/j.ijggc.2009.09.016
Mumford, 2015, Front. Chem. Sci. Eng., 9, 125, 10.1007/s11705-015-1514-6
K. H. Smith , N. J.Nicholas and G. W.Stevens , Inorganic salt solutions for post-combustion capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 145–166
Mumford, 2012, Energy Fuels, 26, 138, 10.1021/ef201192n
UNO, UNO Technology Pty Ltd , http://unotech.com.au/ , 2014
Aronu, 2010, Int. J. Greenhouse Gas Control, 4, 771, 10.1016/j.ijggc.2010.04.003
Rabensteiner, 2014, Int. J. Greenhouse Gas Control, 29, 1, 10.1016/j.ijggc.2014.07.011
Rabensteiner, 2015, Int. J. Greenhouse Gas Control, 42, 562, 10.1016/j.ijggc.2015.09.012
Fernandez, 2013, Ind. Eng. Chem. Res., 52, 12223, 10.1021/ie401228r
Stephenson, 1993, J. Chem. Eng. Data, 38, 634, 10.1021/je00012a041
Ye, 2015, Int. J. Greenhouse Gas Control, 39, 205, 10.1016/j.ijggc.2015.05.025
Ciftja, 2013, Chem. Eng. Sci., 102, 378, 10.1016/j.ces.2013.08.036
Chowdhury, 2013, Energy Procedia, 37, 265, 10.1016/j.egypro.2013.05.111
Shi, 2012, Ind. Eng. Chem. Res., 51, 8608, 10.1021/ie300358c
Singto, 2016, Sep. Purif. Technol., 167, 97, 10.1016/j.seppur.2016.05.002
Yang, 2016, Energy Fuels, 30, 7503, 10.1021/acs.energyfuels.6b00875
Kikkinides, 1993, Ind. Eng. Chem. Res., 32, 2714, 10.1021/ie00023a038
Chue, 1995, Ind. Eng. Chem. Res., 34, 591, 10.1021/ie00041a020
Ishibashi, 1996, Energy Convers. Manage., 37, 929, 10.1016/0196-8904(95)00279-0
Ahmed, 2017, Chem. Eng. J., 310, 197, 10.1016/j.cej.2016.10.115
Webley, 2014, Adsorption, 20, 225, 10.1007/s10450-014-9603-2
Duan, 2017, Coord. Chem. Rev., 332, 48, 10.1016/j.ccr.2016.11.004
Grande, 2008, Int. J. Greenhouse Gas Control, 2, 194
Sanz-Pérez, 2016, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173
Kumar, 2015, Angew. Chem., Int. Ed., 54, 14372, 10.1002/anie.201506952
Shekhah, 2014, Nat. Commun., 5, 4228, 10.1038/ncomms5228
Figueroa, 2008, Int. J. Greenhouse Gas Control, 2, 9, 10.1016/S1750-5836(07)00094-1
Olivares-Marín, 2012, Greenhouse Gases: Sci. Technol., 2, 20, 10.1002/ghg.45
CO2CRC, The CO2CRC H3 Capture Project , http://old.co2crc.com.au/research/demo_postcombustion.html , CO2CRC Limited, The University of Melbourne, Australia, accessed January 2017
Tonomura, 2013, Energy Procedia, 37, 7160, 10.1016/j.egypro.2013.06.653
Saima, 2013, Energy Procedia, 37, 7152, 10.1016/j.egypro.2013.06.652
Kenarsari, 2013, RSC Adv., 3, 22739, 10.1039/c3ra43965h
Zhang, 2014, Energy Environ. Sci., 7, 2868, 10.1039/C4EE00143E
Bae, 2011, Angew. Chem., Int. Ed., 50, 11586, 10.1002/anie.201101891
Zhang, 2012, Energy Environ. Sci., 5, 6668, 10.1039/c2ee21152a
Li, 2011, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012
Sumida, 2011, Chem. Rev., 112, 724, 10.1021/cr2003272
Wang, 2011, Energy Environ. Sci., 4, 42, 10.1039/C0EE00064G
Samanta, 2012, Ind. Eng. Chem. Res., 51, 1438, 10.1021/ie200686q
Liu, 2012, Chem. Soc. Rev., 41, 2308, 10.1039/C1CS15221A
Huck, 2014, Energy Environ. Sci., 7, 4132, 10.1039/C4EE02636E
Hefti, 2016, Faraday Discuss., 192, 153, 10.1039/C6FD00040A
Haghpanah, 2013, Ind. Eng. Chem. Res., 52, 4249, 10.1021/ie302658y
Haghpanah, 2013, AIChE J., 59, 4735, 10.1002/aic.14192
Maring, 2013, Int. J. Greenhouse Gas Control, 15, 16, 10.1016/j.ijggc.2013.01.009
Nikolaidis, 2016, Ind. Eng. Chem. Res., 55, 635, 10.1021/acs.iecr.5b02845
First, 2014, AIChE J., 60, 1767, 10.1002/aic.14441
Chung, 2016, Sci. Adv., 2, e1600909, 10.1126/sciadv.1600909
Kim, 2013, Int. J. Greenhouse Gas Control, 17, 13, 10.1016/j.ijggc.2013.04.005
Lively, 2010, Ind. Eng. Chem. Res., 49, 7550, 10.1021/ie100806g
Bollini, 2012, Ind. Eng. Chem. Res., 51, 15145, 10.1021/ie301790a
Shen, 2012, Ind. Eng. Chem. Res., 51, 5011, 10.1021/ie202097y
Shen, 2011, Adsorption, 17, 179, 10.1007/s10450-010-9298-y
Xu, 2013, Chem. Eng. J., 230, 64, 10.1016/j.cej.2013.06.080
Ko, 2016, Ind. Eng. Chem. Res., 55, 8967, 10.1021/acs.iecr.6b01288
Campo, 2016, Fuel Process. Technol., 143, 185, 10.1016/j.fuproc.2015.11.024
Krishnamurthy, 2014, AIChE J., 60, 1830, 10.1002/aic.14435
Ling, 2015, Chem. Eng. J., 265, 47, 10.1016/j.cej.2014.11.121
Ebner, 2009, Sep. Sci. Technol., 44, 1273, 10.1080/01496390902733314
Wilcox, 2014, Annu. Rev. Chem. Biomol. Eng., 5, 479, 10.1146/annurev-chembioeng-060713-040100
Khurana, 2017, AIChE J., 1
Nikolaidis, 2017, Ind. Eng. Chem. Res., 56, 974, 10.1021/acs.iecr.6b04270
Leperi, 2016, Ind. Eng. Chem. Res., 55, 3338, 10.1021/acs.iecr.5b03122
Li, 2011, Chem. Eng. Sci., 66, 1825, 10.1016/j.ces.2011.01.023
Schell, 2009, Energy Procedia, 1, 655, 10.1016/j.egypro.2009.01.086
Garcia, 2013, Int. J. Greenhouse Gas Control, 12, 35, 10.1016/j.ijggc.2012.10.018
Liu, 2011, Sep. Purif. Technol., 81, 307, 10.1016/j.seppur.2011.07.037
Mulgundmath, 2010, Adsorption, 16, 587, 10.1007/s10450-010-9255-9
Marx, 2016, Ind. Eng. Chem. Res., 55, 1401, 10.1021/acs.iecr.5b03727
Joss, 2017, Chem. Eng. Sci., 158, 381, 10.1016/j.ces.2016.10.013
Ntiamoah, 2016, Ind. Eng. Chem. Res., 55, 703, 10.1021/acs.iecr.5b01384
Shin, 2012, Korean Chem. Eng. Res., 50, 646, 10.9713/kcer.2012.50.4.646
Kim, 2015, Korean J. Chem. Eng., 32, 677, 10.1007/s11814-014-0297-7
T. O. Nelson , D. A.Green , P.Box , R. P.Gupta , G.Henningsen , B. S.Turk and R. T. I. International , Carbon dioxide capture from flue gas using dry regenerable sorbents, RTI International , Research Triangle Institute , USA , 2009
Chaiwang, 2014, Chem. Eng. Sci., 105, 32, 10.1016/j.ces.2013.09.024
Darunte, 2016, Curr. Opin. Chem. Eng., 12, 82, 10.1016/j.coche.2016.03.002
Zhang, 2014, Chem. Eng. J., 251, 293, 10.1016/j.cej.2014.04.063
Schöny, 2017, Powder Technol., 316, 519, 10.1016/j.powtec.2016.11.066
Pirngruber, 2013, Int. J. Greenhouse Gas Control, 14, 74, 10.1016/j.ijggc.2013.01.010
Sjostrom, 2011, Energy Procedia, 4, 1584, 10.1016/j.egypro.2011.02.028
Zaabout, 2017, Int. J. Greenhouse Gas Control, 60, 74, 10.1016/j.ijggc.2017.03.001
Son, 2016, Int. J. Greenhouse Gas Control, 49, 34, 10.1016/j.ijggc.2016.02.020
Hammache, 2013, Energy Fuels, 27, 6899, 10.1021/ef401562w
Fujiki, 2017, Chem. Eng. J., 307, 273, 10.1016/j.cej.2016.08.071
Inventys, VeloxoTherm™ process , Burnaby, BC Canada, 2016, http://inventysinc.com/
Tlili, 2012, Ind. Eng. Chem. Res., 51, 15729, 10.1021/ie3016818
Ribeiro, 2013, Chem. Eng. Sci., 104, 304, 10.1016/j.ces.2013.09.011
Grande, 2009, Energy Fuels, 23, 2797, 10.1021/ef8010756
Wang, 2011, Environ. Sci. Technol., 45, 6670, 10.1021/es201180v
Fernandez, 2012, Chem. Eng. Sci., 84, 1, 10.1016/j.ces.2012.07.039
Wu, 2013, Chem. Eng. Technol., 36, 567, 10.1002/ceat.201200694
Gazzani, 2013, Fuel, 105, 206, 10.1016/j.fuel.2012.07.048
Manzolini, 2013, Fuel, 105, 220, 10.1016/j.fuel.2012.07.043
Jansen, 2013, Energy Procedia, 37, 2265, 10.1016/j.egypro.2013.06.107
Li Yuen Fong, 2016, J. Cleaner Prod., 111, 193, 10.1016/j.jclepro.2015.08.033
Grajciar, 2012, ChemSusChem, 5, 2011, 10.1002/cssc.201200270
Kim, 2012, J. Am. Chem. Soc., 134, 18940, 10.1021/ja309818u
Lozinska, 2014, Chem. Mater., 26, 2052, 10.1021/cm404028f
Bae, 2013, Energy Environ. Sci., 6, 128, 10.1039/C2EE23337A
Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336
Nugent, 2013, Nature, 495, 80, 10.1038/nature11893
Couck, 2009, J. Am. Chem. Soc., 131, 6326, 10.1021/ja900555r
Burtch, 2014, Chem. Rev., 114, 10575, 10.1021/cr5002589
Wang, 2016, Chem. Soc. Rev., 45, 5107, 10.1039/C6CS00362A
Choi, 2009, ChemSusChem, 2, 796, 10.1002/cssc.200900036
Mason, 2011, Macromolecules, 44, 6471, 10.1021/ma200918h
Mason, 2014, Macromolecules, 47, 1021, 10.1021/ma401869p
Sevilla, 2011, Adv. Funct. Mater., 21, 2781, 10.1002/adfm.201100291
Xu, 2002, Energy Fuels, 16, 1463, 10.1021/ef020058u
Demessence, 2009, J. Am. Chem. Soc., 131, 8784, 10.1021/ja903411w
McDonald, 2011, Chem. Sci., 2, 2022, 10.1039/c1sc00354b
McDonald, 2012, J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j
Lee, 2014, Energy Environ. Sci., 7, 744, 10.1039/C3EE42328J
McDonald, 2015, Nature, 519, 303, 10.1038/nature14327
Anbia, 2012, Chem. Eng. J., 191, 326, 10.1016/j.cej.2012.03.025
Zhao, 2013, Appl. Surf. Sci., 284, 138, 10.1016/j.apsusc.2013.07.068
Rezaei, 2009, Chem. Eng. Sci., 64, 5182, 10.1016/j.ces.2009.08.029
Rezaei, 2010, Ind. Eng. Chem. Res., 49, 4832, 10.1021/ie9016545
Vargas, 2011, Adsorption, 17, 497, 10.1007/s10450-010-9309-z
Lively, 2011, Chem. Eng. J., 171, 801, 10.1016/j.cej.2011.01.004
Lively, 2012, Int. J. Hydrogen Energy, 37, 15227, 10.1016/j.ijhydene.2012.07.110
Rezaei, 2014, Chem. Eng. Sci., 113, 62, 10.1016/j.ces.2014.04.002
Determan, 2016, Ind. Eng. Chem. Res., 55, 2119, 10.1021/acs.iecr.5b02117
Thakkar, 2016, ACS Appl. Mater. Interfaces, 8, 27753, 10.1021/acsami.6b09647
Mason, 2015, J. Am. Chem. Soc., 137, 4787, 10.1021/jacs.5b00838
Gibson, 2016, Ind. Eng. Chem. Res., 55, 3840, 10.1021/acs.iecr.5b05015
Ramos-Fernandez, 2011, Appl. Catal., A, 391, 261, 10.1016/j.apcata.2010.05.019
Schwab, 2008, Adv. Eng. Mater., 10, 1151, 10.1002/adem.200800189
Küsgens, 2010, J. Am. Ceram. Soc., 93, 2476, 10.1111/j.1551-2916.2010.03824.x
Calvez, 2016, RSC Adv., 6, 17314, 10.1039/C5RA25238E
Armstrong, 2015, Ind. Eng. Chem. Res., 54, 12386, 10.1021/acs.iecr.5b03334
Bradshaw, 2012, Chem. Soc. Rev., 41, 2344, 10.1039/C1CS15276A
Ostermann, 2011, Chem. Commun., 47, 442, 10.1039/C0CC02271C
Shimizu, 1999, Chem. Eng. Res. Des., 77, 62, 10.1205/026387699525882
Hanak, 2015, Int. J. Greenhouse Gas Control, 42, 226, 10.1016/j.ijggc.2015.08.003
Hanak, 2016, Energy, 102, 343, 10.1016/j.energy.2016.02.079
M. Iijima , Mitsbubishi Heavy Industries Flue Gas CO2 Recovery Technology. Presentation, Global Climate & Energy Project Energy Workshop on Carbon Capture and Separation , Stanford University, 2004, https://gcep.stanford.edu/pdfs/energy_workshops_04_04/carbon_iijima.pdf
D. A. Jones , T. F.McVey and S. J.Friedmann , Technoeconomic evaluation of MEA versus mixed amines for CO2 removal at near-commercial scale at Duke Energy Gibson 3 plant. Report prepared for the U.S. Department of Energy , Lawrence Livermore National Laboratory, 2012, https://e-reports-ext.llnl.gov/pdf/700272.pdf
Ozcan, 2013, Int. J. Greenhouse Gas Control, 19, 530, 10.1016/j.ijggc.2013.10.009
Atsonios, 2015, Fuel, 153, 210, 10.1016/j.fuel.2015.02.084
Perejón, 2016, Appl. Energy, 162, 787, 10.1016/j.apenergy.2015.10.121
J. Blamey and B.Anthony , Chapter 8: End use of lime-based sorbents from calcium looping systems , Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture , Woodhead Publishing Ltd. , UK , 2015 , pp. 153–169
Kremer, 2013, Chem. Eng. Technol., 36, 1518, 10.1002/ceat.201300084
Ströhle, 2014, Fuel, 127, 13, 10.1016/j.fuel.2013.12.043
Arias, 2013, Int. J. Greenhouse Gas Control, 18, 237, 10.1016/j.ijggc.2013.07.014
H.-W. Hsu , Calcium-looping CO2Capture Technology, Industrial Technology Research Institute (ITRI) , https://www.itri.org.tw/eng/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620170236661141772&MSid=620170263150637304 , accessed December 2016
Abanades, 2015, Int. J. Greenhouse Gas Control, 40, 126, 10.1016/j.ijggc.2015.04.018
Hanak, 2015, Energy Environ. Sci., 8, 2199, 10.1039/C5EE01228G
Blamey, 2010, Prog. Energy Combust. Sci., 36, 260, 10.1016/j.pecs.2009.10.001
Manovic, 2010, Ind. Eng. Chem. Res., 49, 9105, 10.1021/ie101352s
Donat, 2012, Environ. Sci. Technol., 46, 1262, 10.1021/es202679w
Duelli, 2015, Int. J. Greenhouse Gas Control, 33, 103, 10.1016/j.ijggc.2014.12.006
Symonds, 2012, Ind. Eng. Chem. Res., 51, 7177, 10.1021/ie2030129
Manovic, 2010, Ind. Eng. Chem. Res., 49, 6916, 10.1021/ie901795e
Hu, 2016, Fuel, 181, 199, 10.1016/j.fuel.2016.04.138
He, 2016, Int. J. Hydrogen Energy, 41, 4296, 10.1016/j.ijhydene.2016.01.029
Champagne, 2016, Powder Technol., 290, 114, 10.1016/j.powtec.2015.07.039
Kavosh, 2014, Appl. Energy, 131, 499, 10.1016/j.apenergy.2014.05.020
Clough, 2016, Fuel, 186, 708, 10.1016/j.fuel.2016.08.098
Jia, 2007, Ind. Eng. Chem. Res., 46, 5199, 10.1021/ie061212t
Ridha, 2016, Powder Technol., 291, 60, 10.1016/j.powtec.2015.11.065
Erans, 2016, Appl. Energy, 180, 722, 10.1016/j.apenergy.2016.07.074
Erans, 2016, Faraday Discuss., 192, 97, 10.1039/C6FD00027D
Erans, 2017, Fuel, 187, 388, 10.1016/j.fuel.2016.09.061
Ridha, 2013, Int. J. Greenhouse Gas Control, 17, 357, 10.1016/j.ijggc.2013.05.009
Fennell, 2007, Energy Fuels, 21, 2072, 10.1021/ef060506o
Al-Jeboori, 2013, Ind. Eng. Chem. Res., 52, 1426, 10.1021/ie302198g
Ridha, 2015, Chem. Eng. J., 274, 69, 10.1016/j.cej.2015.03.041
Pinheiro, 2016, Ind. Eng. Chem. Res., 55, 7860, 10.1021/acs.iecr.5b04574
Fennell, 2007, J. Energy Inst., 80, 116, 10.1179/174602207X189175
Wu, 2010, Energy Fuels, 24, 2768, 10.1021/ef9012449
Yu, 2012, Ind. Eng. Chem. Res., 51, 2133, 10.1021/ie200802y
Blamey, 2015, Fuel, 150, 269, 10.1016/j.fuel.2015.02.026
Salvador, 2003, Chem. Eng. J., 96, 187, 10.1016/j.cej.2003.08.011
Sun, 2008, AIChE J., 54, 1668, 10.1002/aic.11491
Chen, 2009, Energy Fuels, 23, 1437, 10.1021/ef800779k
Arias, 2011, Chem. Eng. J., 167, 255, 10.1016/j.cej.2010.12.052
Diego, 2016, Int. J. Greenhouse Gas Control, 50, 14, 10.1016/j.ijggc.2016.04.008
Yin, 2016, Energy Fuels, 30, 1730, 10.1021/acs.energyfuels.5b02266
Wang, 2016, Int. J. Hydrogen Energy, 41, 12000, 10.1016/j.ijhydene.2016.05.056
Wu, 2017, J. Cleaner Prod., 140, 1049, 10.1016/j.jclepro.2016.10.079
Manovic, 2011, Ind. Eng. Chem. Res., 50, 12384, 10.1021/ie201427g
Qin, 2016, Fuel, 181, 522, 10.1016/j.fuel.2016.05.035
Rahman, 2015, Energy Fuels, 29, 3808, 10.1021/acs.energyfuels.5b00256
Duhoux, 2016, Energy Technol., 4, 1158, 10.1002/ente.201600024
Hanak, 2016, Energy Environ. Sci., 9, 971, 10.1039/C5EE02950C
Tregambi, 2015, Sol. Energy, 120, 208, 10.1016/j.solener.2015.07.017
Chacartegui, 2016, Appl. Energy, 173, 589, 10.1016/j.apenergy.2016.04.053
Zhai, 2016, Energy Convers. Manage., 117, 251, 10.1016/j.enconman.2016.03.022
Lara, 2016, Energy, 116, 956, 10.1016/j.energy.2016.10.020
E. J. Anthony , Private communication from Cranfield University , December, 2016
Adanez, 2012, Prog. Energy Combust. Sci., 38, 215, 10.1016/j.pecs.2011.09.001
Fan, 2012, Energy Environ. Sci., 5, 7254, 10.1039/c2ee03198a
Murugan, 2011, Energy Environ. Sci., 4, 4639, 10.1039/c1ee02142g
Jensen, 2009, J. Chem. Educ., 86, 1266, 10.1021/ed086p1266
Zhou, 2016, Energy Fuels, 30, 1741, 10.1021/acs.energyfuels.5b02209
Thursfield, 2012, Energy Environ. Sci., 5, 7421, 10.1039/c2ee03470k
Ishida, 1987, Energy, 12, 147, 10.1016/0360-5442(87)90119-8
Ströhle, 2015, Appl. Energy, 157, 288, 10.1016/j.apenergy.2015.06.035
Jin, 2002, Ind. Eng. Chem. Res., 41, 4004, 10.1021/ie020184l
Jin, 2004, Fuel, 83, 2411, 10.1016/j.fuel.2004.06.033
Mattisson, 2007, Int. J. Greenhouse Gas Control, 1, 158, 10.1016/S1750-5836(07)00023-0
Berguerand, 2009, Energy Fuels, 23, 5257, 10.1021/ef900464j
Leion, 2008, Int. J. Greenhouse Gas Control, 2, 180, 10.1016/S1750-5836(07)00117-X
Dennis, 2010, Fuel, 89, 2353, 10.1016/j.fuel.2010.01.037
Siriwardane, 2010, Combust. Flame, 157, 2198, 10.1016/j.combustflame.2010.06.008
Leion, 2007, Fuel, 86, 1947, 10.1016/j.fuel.2006.11.037
Saucedo, 2014, Proc. Combust. Inst., 35, 2785, 10.1016/j.proci.2014.07.005
Scott, 2006, AIChE J., 52, 3325, 10.1002/aic.10942
Linderholm, 2014, Energy Fuels, 28, 5942, 10.1021/ef501067b
Mattisson, 2009, Int. J. Greenhouse Gas Control, 3, 11, 10.1016/j.ijggc.2008.06.002
Arjmand, 2012, Energy Fuels, 26, 6528, 10.1021/ef3010064
Xu, 2013, Energy Fuels, 27, 1522, 10.1021/ef301969k
Azimi, 2013, Energy Fuels, 27, 367, 10.1021/ef301120r
Ekström, 2009, Energy Procedia, 1, 4233, 10.1016/j.egypro.2009.02.234
Lyngfelt, 2015, Appl. Energy, 157, 475, 10.1016/j.apenergy.2015.04.057
Porrazzo, 2016, Faraday Discuss., 192, 437, 10.1039/C6FD00033A
I. Abdulally , C.Beal , H.Andrus , B.Epple , A.Lyngfelt and B.Lani , Alstom's Chemical Looping Prototypes, Program Update, 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA
Hallberg, 2016, Int. J. Greenhouse Gas Control, 53, 222, 10.1016/j.ijggc.2016.08.006
Bayham, 2013, Energy Fuels, 27, 1347, 10.1021/ef400010s
Jeong, 2014, Renewable Energy, 65, 102, 10.1016/j.renene.2013.07.035
McLeary, 2006, Microporous Mesoporous Mater., 90, 198, 10.1016/j.micromeso.2005.10.050
Sridhar, 2007, Sep. Purif. Rev., 36, 113, 10.1080/15422110601165967
Aroon, 2010, Sep. Purif. Technol., 75, 229, 10.1016/j.seppur.2010.08.023
Brunetti, 2010, J. Membr. Sci., 359, 115, 10.1016/j.memsci.2009.11.040
Scholes, 2010, Int. J. Greenhouse Gas Control, 4, 739, 10.1016/j.ijggc.2010.04.001
Favre, 2011, Chem. Eng. J., 171, 782, 10.1016/j.cej.2011.01.010
Du, 2012, Energy Environ. Sci., 5, 7306, 10.1039/C1EE02668B
Scholes, 2012, Fuel, 96, 15, 10.1016/j.fuel.2011.12.074
Belaissaoui, 2014, Oil Gas Sci. Technol., 69, 1005, 10.2516/ogst/2013163
Brunetti, 2014, J. Membr. Sci., 454, 305, 10.1016/j.memsci.2013.12.037
Al-Mufachi, 2015, Renewable Sustainable Energy Rev., 47, 540, 10.1016/j.rser.2015.03.026
Gallucci, 2013, Chem. Eng. Sci., 92, 40, 10.1016/j.ces.2013.01.008
Chi, 2016, Chem. Mater., 28, 2921, 10.1021/acs.chemmater.5b04475
Ilinitch, 1995, J. Membr. Sci., 98, 287, 10.1016/0376-7388(94)00262-W
Jiao, 2015, ACS Appl. Mater. Interfaces, 7, 9052, 10.1021/am509048k
Kharton, 1999, J. Membr. Sci., 163, 307, 10.1016/S0376-7388(99)00172-6
Sunarso, 2017, Prog. Energy Combust. Sci., 61, 57, 10.1016/j.pecs.2017.03.003
Yepes, 2006, J. Membr. Sci., 274, 92, 10.1016/j.memsci.2005.08.003
Thursfield, 2004, J. Mater. Chem., 14, 2475, 10.1039/b405676k
Sunarso, 2008, J. Membr. Sci., 320, 13, 10.1016/j.memsci.2008.03.074
Zhang, 2011, RSC Adv., 1, 1661, 10.1039/c1ra00419k
Geffroy, 2013, Chem. Eng. Sci., 87, 408, 10.1016/j.ces.2012.10.027
Shao, 2000, J. Membr. Sci., 172, 177, 10.1016/S0376-7388(00)00337-9
Phair, 2006, Ionics, 12, 103, 10.1007/s11581-006-0016-4
Li, 2009, Catal. Today, 148, 303, 10.1016/j.cattod.2009.08.009
Rui, 2009, J. Membr. Sci., 345, 110, 10.1016/j.memsci.2009.08.034
Chung, 2005, Ind. Eng. Chem. Res., 44, 7999, 10.1021/ie0503141
Papaioannou, 2015, J. Membr. Sci., 485, 87, 10.1016/j.memsci.2015.03.013
Tong, 2016, J. Mater. Chem. A, 4, 1828, 10.1039/C5TA10105K
Zhang, 2012, Energy Environ. Sci., 5, 8310, 10.1039/c2ee22045h
Barbieri, 2008, J. Power Sources, 182, 160, 10.1016/j.jpowsour.2008.03.086
Brunetti, 2007, J. Membr. Sci., 306, 329, 10.1016/j.memsci.2007.09.009
Cabral, 2017, Appl. Energy, 205, 529, 10.1016/j.apenergy.2017.08.003
Uemiya, 1991, Ind. Eng. Chem. Res., 30, 585, 10.1021/ie00051a022
Bi, 2009, Int. J. Hydrogen Energy, 34, 2965, 10.1016/j.ijhydene.2009.01.046
Mendes, 2010, Int. J. Hydrogen Energy, 35, 12596, 10.1016/j.ijhydene.2010.07.159
Catalano, 2010, J. Membr. Sci., 362, 221, 10.1016/j.memsci.2010.06.055
Mendes, 2011, Chem. Eng. Sci., 66, 2356, 10.1016/j.ces.2011.02.035
Catalano, 2013, Ind. Eng. Chem. Res., 52, 1042, 10.1021/ie2025008
Shirasaki, 2009, Int. J. Hydrogen Energy, 34, 4482, 10.1016/j.ijhydene.2008.08.056
Huang, 2005, J. Membr. Sci., 261, 67, 10.1016/j.memsci.2005.03.033
Lima da Silva, 2011, J. Power Sources, 196, 8568, 10.1016/j.jpowsour.2011.06.035
Jiang, 2008, Angew. Chem., Int. Ed., 47, 9341, 10.1002/anie.200803899
Li, 2016, Angew. Chem., Int. Ed., 128, 8708, 10.1002/ange.201602207
Bredesen, 2004, Chem. Eng. Process., 43, 1129, 10.1016/j.cep.2003.11.011
Hashim, 2011, Renewable Sustainable Energy Rev., 15, 1284, 10.1016/j.rser.2010.10.002
Habib, 2011, Int. J. Energy Res., 35, 741, 10.1002/er.1798
Mancini, 2011, Phys. Chem. Chem. Phys., 13, 21351, 10.1039/c1cp23027a
Mancini, 2011, Energy, 36, 4701, 10.1016/j.energy.2011.05.023
Gunasekaran, 2014, Energy, 70, 338, 10.1016/j.energy.2014.04.008
Dong, 2012, Curr. Opin. Chem. Eng., 1, 163, 10.1016/j.coche.2012.03.003
Wei, 2013, Chem. Eng. J., 220, 185, 10.1016/j.cej.2013.01.048
Zheng, 2013, Chem. Eng. Sci., 101, 240, 10.1016/j.ces.2013.06.039
Tang, 2012, AIChE J., 58, 2473, 10.1002/aic.12742
Wei, 2013, J. Membr. Sci., 429, 147, 10.1016/j.memsci.2012.11.075
Wei, 2013, AIChE J., 59, 3856, 10.1002/aic.14131
Xue, 2013, J. Membr. Sci., 443, 124, 10.1016/j.memsci.2013.04.067
Zhu, 2013, Solid State Ionics, 253, 57, 10.1016/j.ssi.2013.08.040
Liang, 2014, Chem. Commun., 50, 2451, 10.1039/C3CC47962E
Tan, 2008, Catal. Today, 131, 292, 10.1016/j.cattod.2007.10.081
Hong, 2013, J. Membr. Sci., 445, 96, 10.1016/j.memsci.2013.05.055
Hong, 2015, J. Membr. Sci., 488, 1, 10.1016/j.memsci.2015.04.006
Hallett, 2011, Chem. Rev., 111, 3508, 10.1021/cr1003248
Olivier-Bourbigou, 2002, J. Mol. Catal. A: Chem., 182, 419, 10.1016/S1381-1169(01)00465-4
Zhao, 2002, Aldrichimica Acta, 35, 75, 10.1016/S0003-2670(01)01543-4
Chiappe, 2005, J. Phys. Org. Chem., 18, 275, 10.1002/poc.863
P. Wasserscheid and T.Welton , Ionic Liquids in Synthesis , John Wiley & Sons , Germany , 2nd edn, 2008
Wasserscheid, 2000, Angew. Chem., Int. Ed., 39, 3772, 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
Gordon, 2001, Appl. Catal., A, 222, 101, 10.1016/S0926-860X(01)00834-1
Sheldon, 2001, Chem. Commun., 2399, 10.1039/b107270f
Welton, 2004, Coord. Chem. Rev., 248, 2459, 10.1016/j.ccr.2004.04.015
Zhang, 2011, Green Chem., 13, 2619, 10.1039/c1gc15334j
Huddleston, 1998, Chem. Commun., 1765, 10.1039/A803999B
Han, 2007, Acc. Chem. Res., 40, 1079, 10.1021/ar700044y
Berthod, 2008, J. Chromatogr. A, 1184, 6, 10.1016/j.chroma.2007.11.109
O. Kuzmina and J.Hallett , Application, Purification, and Recovery of Ionic Liquids , Elsevier , London, UK , 2016
Zhou, 2005, Curr. Nanosci., 1, 35, 10.2174/1573413052953174
El Abedin, 2007, Green Chem., 9, 549, 10.1039/B614520E
Smiglak, 2007, Acc. Chem. Res., 40, 1182, 10.1021/ar7001304
Li, 2008, Curr. Opin. Solid State Mater. Sci., 12, 1, 10.1016/j.cossms.2009.01.002
Ma, 2010, Adv. Mater., 22, 261, 10.1002/adma.200900603
Sato, 2004, Electrochim. Acta, 49, 3603, 10.1016/j.electacta.2004.03.030
Wishart, 2009, Energy Environ. Sci., 2, 956, 10.1039/b906273d
Zhao, 2011, Adv. Mater., 23, 1385, 10.1002/adma.201003294
MacFarlane, 2014, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J
Zhang, 2014, Chem. Soc. Rev., 43, 7838, 10.1039/C3CS60409H
Mora-Pale, 2011, Biotechnol. Bioeng., 108, 1229, 10.1002/bit.23108
Tadesse, 2011, Energy Environ. Sci., 4, 3913, 10.1039/c0ee00667j
Brandt, 2013, Green Chem., 15, 550, 10.1039/c2gc36364j
da Costa Lopes, 2013, Sustainable Chem. Processes, 1, 3, 10.1186/2043-7129-1-3
Earle, 2006, Nature, 439, 831, 10.1038/nature04451
Ngo, 2000, Thermochim. Acta, 357, 97, 10.1016/S0040-6031(00)00373-7
Kosmulski, 2004, Thermochim. Acta, 412, 47, 10.1016/j.tca.2003.08.022
Smiglak, 2006, Chem. Commun., 2554, 10.1039/b602086k
Niedermeyer, 2012, Chem. Soc. Rev., 41, 7780, 10.1039/c2cs35177c
Bara, 2009, Ind. Eng. Chem. Res., 48, 2739, 10.1021/ie8016237
J. S. Kanel , Overview: Industrial application of ionic liquids for liquid extraction, Chemical Industry Vision 2020 Technology Partnership Workshop, New York, New York, 2003
Blanchard, 1999, Nature, 399, 28, 10.1038/19887
Carvalho, 2016, Phys. Chem. Chem. Phys., 18, 14757, 10.1039/C6CP01896C
Blanchard, 2001, J. Phys. Chem. B, 105, 2437, 10.1021/jp003309d
Baltus, 2004, J. Phys. Chem. B, 108, 721, 10.1021/jp036051a
Anthony, 2005, J. Phys. Chem. B, 109, 6366, 10.1021/jp046404l
Muldoon, 2007, J. Phys. Chem. B, 111, 9001, 10.1021/jp071897q
Ramdin, 2012, Ind. Eng. Chem. Res., 51, 8149, 10.1021/ie3003705
Brennecke, 2010, J. Phys. Chem. Lett., 1, 3459, 10.1021/jz1014828
Hasib-ur Rahman, 2010, Chem. Eng. Process., 49, 313, 10.1016/j.cep.2010.03.008
Karadas, 2010, Energy Fuels, 24, 5817, 10.1021/ef1011337
Zhang, 2009, Chem. – Eur. J., 15, 3003, 10.1002/chem.200801184
Wang, 2010, Angew. Chem., Int. Ed., 49, 5978, 10.1002/anie.201002641
Gurau, 2011, Angew. Chem., Int. Ed., 50, 12024, 10.1002/anie.201105198
Wang, 2011, Angew. Chem., Int. Ed., 50, 4918, 10.1002/anie.201008151
Wang, 2013, RSC Adv., 3, 15518, 10.1039/c3ra42366b
Seo, 2014, J. Phys. Chem. B, 118, 5740, 10.1021/jp502279w
Cui, 2016, Chem. Soc. Rev., 45, 4307, 10.1039/C5CS00462D
Bates, 2002, J. Am. Chem. Soc., 124, 926, 10.1021/ja017593d
Davis, 2004, Chem. Lett., 33, 1072, 10.1246/cl.2004.1072
Huang, 2009, Aust. J. Chem., 62, 298, 10.1071/CH08559
Wappel, 2010, Int. J. Greenhouse Gas Control, 4, 486, 10.1016/j.ijggc.2009.11.012
Petkovic, 2011, Chem. Soc. Rev., 40, 1383, 10.1039/C004968A
Yang, 2011, RSC Adv., 1, 545, 10.1039/c1ra00307k
Shannon, 2012, Sep. Sci. Technol., 47, 178, 10.1080/01496395.2011.630055
Giernoth, 2010, Angew. Chem., Int. Ed., 49, 2834, 10.1002/anie.200905981
Gurkan, 2010, J. Phys. Chem. Lett., 1, 3494, 10.1021/jz101533k
Zhang, 2008, AIChE J., 54, 2717, 10.1002/aic.11573
Shiflett, 2005, Ind. Eng. Chem. Res., 44, 4453, 10.1021/ie058003d
Moya, 2014, Ind. Eng. Chem. Res., 53, 13782, 10.1021/ie501925d
de Riva, 2017, Int. J. Greenhouse Gas Control, 61, 61, 10.1016/j.ijggc.2017.03.019
Carvalho, 2009, J. Phys. Chem. B, 113, 6803, 10.1021/jp901275b
Shiflett, 2010, Energy Fuels, 24, 5781, 10.1021/ef100868a
Yu, 2007, AIChE J., 53, 3210, 10.1002/aic.11339
Gutowski, 2008, J. Am. Chem. Soc., 130, 14690, 10.1021/ja804654b
Sharma, 2012, Chem. Eng. J., 193, 267, 10.1016/j.cej.2012.04.015
Sistla, 2014, J. Ind. Eng. Chem., 20, 2497, 10.1016/j.jiec.2013.10.032
Soutullo, 2007, Chem. Mater., 19, 3581, 10.1021/cm0705690
Wang, 2012, Chem. Commun., 48, 6526, 10.1039/c2cc32365f
Yang, 2014, Beilstein J. Org. Chem., 10, 1959, 10.3762/bjoc.10.204
Vijayraghavan, 2013, Phys. Chem. Chem. Phys., 15, 19994, 10.1039/c3cp54082k
Chen, 2014, Green Chem., 16, 3098, 10.1039/C4GC00016A
Egorova, 2015, Toxicol. Res., 4, 152, 10.1039/C4TX00079J
Ohno, 2007, Acc. Chem. Res., 40, 1122, 10.1021/ar700053z
Zhang, 2006, Chem. – Eur. J., 12, 4021, 10.1002/chem.200501015
Jiang, 2008, Chem. Commun., 505, 10.1039/B713648J
Yu, 2009, New J. Chem., 33, 2385, 10.1039/b9nj00330d
Clough, 2013, Phys. Chem. Chem. Phys., 15, 20480, 10.1039/c3cp53648c
Gurkan, 2010, J. Am. Chem. Soc., 132, 2116, 10.1021/ja909305t
Goodrich, 2010, Ind. Eng. Chem. Res., 50, 111, 10.1021/ie101688a
Goodrich, 2011, J. Phys. Chem. B, 115, 9140, 10.1021/jp2015534
Saravanamurugan, 2014, ChemSusChem, 7, 897, 10.1002/cssc.201300691
Luo, 2014, J. Phys. Chem. Lett., 5, 381, 10.1021/jz402531n
Anderson, 2015, Green Chem., 17, 4340, 10.1039/C5GC00720H
Kasahara, 2014, Ind. Eng. Chem. Res., 53, 2422, 10.1021/ie403116t
Romanos, 2014, J. Phys. Chem. C, 118, 24437, 10.1021/jp5062946
Wu, 2011, Ind. Eng. Chem. Res., 50, 8983, 10.1021/ie200518f
Gurkan, 2013, Phys. Chem. Chem. Phys., 15, 7796, 10.1039/c3cp51289d
Li, 2014, J. Phys. Chem. B, 118, 14880, 10.1021/jp5100236
Breugst, 2010, J. Org. Chem., 75, 5250, 10.1021/jo1009883
Wu, 2012, Phys. Chem. Chem. Phys., 14, 13163, 10.1039/c2cp41769c
Ren, 2013, Ind. Eng. Chem. Res., 52, 8565, 10.1021/ie4006386
Tang, 2013, ChemSusChem, 6, 1050, 10.1002/cssc.201200986
Lei, 2014, RSC Adv., 4, 7052, 10.1039/c3ra47524g
Seo, 2014, Energy Fuels, 28, 5968, 10.1021/ef501374x
Kamio, 2017, Sep. Sci. Technol., 52, 197, 10.1080/01496395.2016.1245330
Brown, 2015, AIChE J., 61, 2280, 10.1002/aic.14819
Seo, 2015, J. Phys. Chem. B, 119, 11807, 10.1021/acs.jpcb.5b05733
Zhang, 2014, ChemSusChem, 7, 1484, 10.1002/cssc.201400133
Firaha, 2015, Angew. Chem., Int. Ed., 54, 7805, 10.1002/anie.201502296
Cabaço, 2012, J. Phys. Chem. A, 116, 1605, 10.1021/jp211211n
Mathews, 2000, Chem. Commun., 1249, 10.1039/b002755n
Maginn, 2009, J. Phys.: Condens. Matter, 21, 373101
Rodríguez, 2011, Chem. Commun., 47, 3222, 10.1039/c0cc05223j
Swatloski, 2002, J. Am. Chem. Soc., 124, 4974, 10.1021/ja025790m
Shiflett, 2008, J. Chem. Thermodyn., 40, 25, 10.1016/j.jct.2007.06.003
Shiflett, 2012, ChemPhysChem, 13, 1806, 10.1002/cphc.201200023
Shi, 2014, J. Phys. Chem. B, 118, 7383, 10.1021/jp502425a
Chen, 2011, Energy Fuels, 25, 5810, 10.1021/ef201519g
Wang, 2010, Green Chem., 12, 2019, 10.1039/c0gc00070a
Zhang, 2013, Ind. Eng. Chem. Res., 52, 6069, 10.1021/ie302928v
Seo, 2014, J. Phys. Chem. B, 118, 14870, 10.1021/jp509583c
Gohndrone, 2014, ChemSusChem, 7, 1970, 10.1002/cssc.201400009
Lee, 2015, J. Phys. Chem. B, 120, 1509, 10.1021/acs.jpcb.5b06934
Jessop, 2005, Nature, 436, 1102, 10.1038/4361102a
Heldebrant, 2005, J. Org. Chem., 70, 5335, 10.1021/jo0503759
Heldebrant, 2008, Energy Environ. Sci., 1, 487, 10.1039/b808865a
Phan, 2008, Ind. Eng. Chem. Res., 47, 539, 10.1021/ie070552r
Wang, 2010, Green Chem., 12, 870, 10.1039/b927514b
Hong, 2013, ChemSusChem, 6, 890, 10.1002/cssc.201200971
Benitez-Garcia, 1991, Chem. Eng. Sci., 46, 2927, 10.1016/0009-2509(91)85161-P
Vaidya, 2007, Chem. Eng. Technol., 30, 1467, 10.1002/ceat.200700268
Safdar, 2014, Appl. Mech. Mater., 625, 549, 10.4028/www.scientific.net/AMM.625.549
Zhao, 2014, Angew. Chem., 126, 6032, 10.1002/ange.201400521
Wang, 2012, Chem. – Eur. J., 18, 2153, 10.1002/chem.201103092
Zhang, 2013, Ind. Eng. Chem. Res., 52, 5835, 10.1021/ie4001629
Hu, 2015, Energy Fuels, 29, 6019, 10.1021/acs.energyfuels.5b01062
Ding, 2014, Chem. Commun., 50, 15041, 10.1039/C4CC06944G
Luo, 2014, Angew. Chem., Int. Ed., 53, 7053, 10.1002/anie.201400957
Feng, 2010, Chem. Eng. J., 160, 691, 10.1016/j.cej.2010.04.013
Ma, 2011, Environ. Sci. Technol., 45, 10627, 10.1021/es201808e
Zhang, 2013, Chem. Eng. J., 214, 355, 10.1016/j.cej.2012.10.080
McDonald, 2014, Environ. Chem. Lett., 12, 201, 10.1007/s10311-013-0435-1
Guo, 2013, Int. J. Greenhouse Gas Control, 16, 197, 10.1016/j.ijggc.2013.03.024
Guo, 2015, Int. J. Greenhouse Gas Control, 34, 31, 10.1016/j.ijggc.2014.12.021
Wang, 2011, J. Chem. Eng. Data, 56, 1125, 10.1021/je101014q
Stevanovic, 2013, Int. J. Greenhouse Gas Control, 17, 78, 10.1016/j.ijggc.2013.04.017
Camper, 2008, Ind. Eng. Chem. Res., 47, 8496, 10.1021/ie801002m
Taib, 2012, Chem. Eng. J., 181, 56, 10.1016/j.cej.2011.09.048
Feng, 2012, Chem. Eng. J., 181, 222, 10.1016/j.cej.2011.11.066
Feng, 2013, Chem. Eng. J., 223, 371, 10.1016/j.cej.2013.03.005
Gao, 2013, Int. J. Greenhouse Gas Control, 19, 379, 10.1016/j.ijggc.2013.09.019
Zhou, 2012, Chem. Eng. J., 204–206, 235, 10.1016/j.cej.2012.07.108
Lv, 2015, Chem. Eng. J., 270, 372, 10.1016/j.cej.2015.02.010
Lv, 2015, Chem. Eng. J., 280, 695, 10.1016/j.cej.2015.06.004
Yu, 2012, AIChE J., 58, 2885, 10.1002/aic.12786
Atilhan, 2013, Ind. Eng. Chem. Res., 52, 16774, 10.1021/ie403065u
Z.-Z. Yang , Q.-W.Song and L.-N.He , Capture and Utilization of Carbon Dioxide with Polyethylene Glycol , Springer Science & Business Media, Verlag Berlin Heidelberg , 2012
Li, 2014, J. Chem. Thermodyn., 79, 230, 10.1016/j.jct.2014.08.006
Seddon, 2000, Pure Appl. Chem., 72, 2275, 10.1351/pac200072122275
Cui, 2014, Green Chem., 16, 1211, 10.1039/C3GC41458B
Cui, 2015, Chem. – Eur. J., 21, 5632, 10.1002/chem.201405683
Dolezalek, 1908, Z. Phys. Chem., 64, 727, 10.1515/zpch-1908-0143
van Laar, 1910, Z. Phys. Chem., 72, 723, 10.1515/zpch-1910-7236
van Laar, 1913, Z. Phys. Chem., 83, 599, 10.1515/zpch-1913-8342
Maurer, 1986, Fluid Phase Equilib., 30, 337, 10.1016/0378-3812(86)80067-X
Heidemann, 1976, Proc. Natl. Acad. Sci. U. S. A., 73, 1773, 10.1073/pnas.73.6.1773
J. M. Prausnitz , R. N.Lichtenthaler and E. G.de Azevedo , Molecular Thermodynamics of Fluid Phase Equilibria , Prentice-Hall , New Jersey, US , 3rd edn, 1999
B. E. Poling , J. M.Prausnitz and J. P.O'Connell , The Properties of Gases and Liquids , McGraw-Hill , New York, US , 5th edn, 2004
Austgen, 1989, Ind. Eng. Chem. Res., 28, 1060, 10.1021/ie00091a028
Austgen, 1991, Ind. Eng. Chem. Res., 30, 543, 10.1021/ie00051a016
Chen, 1982, AIChE J., 28, 588, 10.1002/aic.690280410
Chen, 1986, AIChE J., 32, 444, 10.1002/aic.690320311
Soave, 1972, Chem. Eng. Sci., 27, 1197, 10.1016/0009-2509(72)80096-4
Bollas, 2008, AIChE J., 54, 1608, 10.1002/aic.11485
Hessen, 2010, Chem. Eng. Sci., 65, 3638, 10.1016/j.ces.2010.03.010
Zhang, 2011, Fluid Phase Equilib., 311, 67, 10.1016/j.fluid.2011.08.025
Zhang, 2011, Ind. Eng. Chem. Res., 50, 163, 10.1021/ie1006855
Faramarzi, 2009, Fluid Phase Equilib., 282, 121, 10.1016/j.fluid.2009.05.002
Thomsen, 1999, Chem. Eng. Sci., 54, 1787, 10.1016/S0009-2509(99)00019-6
Kuranov, 1997, Fluid Phase Equilib., 136, 147, 10.1016/S0378-3812(97)00138-6
Eastman, 1914, J. Am. Chem. Soc., 36, 2020, 10.1021/ja02187a005
Harris, 1969, Ind. Eng. Chem. Fundam., 8, 180, 10.1021/i160030a001
E. A. Guggenheim , Mixtures: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys , Clarendon Press , Oxford, UK , 1952
Barker, 1953, Discuss. Faraday Soc., 15, 188, 10.1039/df9531500188
Abrams, 1975, AIChE J., 21, 116, 10.1002/aic.690210115
Fredenslund, 1975, AIChE J., 21, 1086, 10.1002/aic.690210607
A. Fredenslund and J. M.Sørensen , Group contribution estimation methods , Models for Thermodynamic and Phase Equilibria Calculations , Marcel Dekker , New York , 1994
V. Papaioannou , C. S.Adjiman , G.Jackson and A.Galindo , Group contribution methodologies for the prediction of thermodynamic properties and phase behavior in mixtures , Process Systems Engineering, Molecular Systems Engineering , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim, Germany , 2010 , vol. 6, pp. 135–172
Chapman, 1989, Fluid Phase Equilib., 52, 31, 10.1016/0378-3812(89)80308-5
Chapman, 1990, Ind. Eng. Chem. Res., 29, 1709, 10.1021/ie00104a021
Wertheim, 1984, J. Stat. Phys., 35, 19, 10.1007/BF01017362
Wertheim, 1984, J. Stat. Phys., 35, 35, 10.1007/BF01017363
Wertheim, 1986, J. Stat. Phys., 42, 477, 10.1007/BF01127722
Wertheim, 1986, J. Stat. Phys., 42, 459, 10.1007/BF01127721
Jackson, 1988, Mol. Phys., 65, 1, 10.1080/00268978800100821
Chapman, 1988, Mol. Phys., 65, 1057, 10.1080/00268978800101601
Economou, 1991, AIChE J., 37, 1875, 10.1002/aic.690371212
Gil-Villegas, 1997, J. Chem. Phys., 106, 4168, 10.1063/1.473101
Galindo, 1998, Mol. Phys., 93, 241, 10.1080/00268979809482207
Lafitte, 2013, J. Chem. Phys., 139, 154504, 10.1063/1.4819786
Dufal, 2015, Mol. Phys., 113, 948, 10.1080/00268976.2015.1029027
Blas, 1997, Mol. Phys., 92, 135, 10.1080/00268979709482082
Blas, 1998, Ind. Eng. Chem. Res., 37, 660, 10.1021/ie970449+
Gross, 2001, Ind. Eng. Chem. Res., 40, 1244, 10.1021/ie0003887
Kontogeorgis, 1996, Ind. Eng. Chem. Res., 35, 4310, 10.1021/ie9600203
Lymperiadis, 2007, J. Chem. Phys., 127, 234903, 10.1063/1.2813894
Lymperiadis, 2008, Fluid Phase Equilib., 274, 85, 10.1016/j.fluid.2008.08.005
Papaioannou, 2014, J. Chem. Phys., 140, 54107, 10.1063/1.4851455
Dufal, 2014, J. Chem. Eng. Data, 59, 3272, 10.1021/je500248h
Clark, 2006, Mol. Phys., 104, 3561, 10.1080/00268970601081475
Mac Dowell, 2010, Ind. Eng. Chem. Res., 49, 1883, 10.1021/ie901014t
Rodriguez, 2012, Mol. Phys., 110, 1325, 10.1080/00268976.2012.665504
Jou, 1995, Can. J. Chem. Eng., 73, 140, 10.1002/cjce.5450730116
Böttinger, 2008, Fluid Phase Equilib., 263, 131, 10.1016/j.fluid.2007.09.017
Chremos, 2016, Fluid Phase Equilib., 407, 280, 10.1016/j.fluid.2015.07.052
Button, 1999, Fluid Phase Equilib., 158–160, 175, 10.1016/S0378-3812(99)00150-8
Mac Dowell, 2013, Int. J. Greenhouse Gas Control, 12, 247, 10.1016/j.ijggc.2012.10.013
Mac Dowell, 2010, Comput.-Aided Chem. Eng., 28, 1231, 10.1016/S1570-7946(10)28206-8
Mac Dowell, 2011, J. Phys. Chem. B, 115, 8155, 10.1021/jp107467s
Chremos, 2013, Chem. Eng. Trans., 35, 427
Aronu, 2011, Chem. Eng. Sci., 66, 6393, 10.1016/j.ces.2011.08.042
Arshad, 2014, J. Chem. Eng. Data, 59, 764, 10.1021/je400886w
Gabrielsen, 2005, Ind. Eng. Chem. Res., 44, 3348, 10.1021/ie048857i
Pitzer, 1973, J. Phys. Chem., 77, 268, 10.1021/j100621a026
Vallée, 1999, Ind. Eng. Chem. Res., 38, 3473, 10.1021/ie980777p
Chunxi, 2000, Chem. Eng. Sci., 55, 2975, 10.1016/S0009-2509(99)00550-3
Fürst, 1993, AIChE J., 39, 335, 10.1002/aic.690390213
Blum, 1975, Mol. Phys., 30, 1529, 10.1080/00268977500103051
Debye, 1923, Phys. Z., 24, 185
D. Henderson , L.Blum and A.Tani , Equation of state of ionic fluids ., Equations of State, Theories and Applications, ACS Symposium Series , American Chemical Society , Washington, DC , 1986 , ch. 13, vol. 300, pp. 281–296
Blum, 1977, J. Phys. Chem., 81, 1311, 10.1021/j100528a019
Liu, 1999, Fluid Phase Equilib., 158-160, 595, 10.1016/S0378-3812(99)00082-5
Galindo, 1999, J. Phys. Chem. B, 103, 10272, 10.1021/jp991959f
Gil-Villegas, 2001, Mol. Phys., 99, 531, 10.1080/00268970010018666
Patel, 2003, Ind. Eng. Chem. Res., 42, 3809, 10.1021/ie020918u
Behzadi, 2005, Fluid Phase Equilib., 236, 241, 10.1016/j.fluid.2005.07.019
Schreckenberg, 2014, Mol. Phys., 112, 2339, 10.1080/00268976.2014.910316
Eriksen, 2016, Mol. Phys., 114, 2724, 10.1080/00268976.2016.1236221
Cameretti, 2005, Ind. Eng. Chem. Res., 44, 3355, 10.1021/ie0488142
Held, 2008, Fluid Phase Equilib., 270, 87, 10.1016/j.fluid.2008.06.010
Held, 2009, Fluid Phase Equilib., 279, 141, 10.1016/j.fluid.2009.02.015
Zhao, 2007, J. Chem. Phys., 126, 244503, 10.1063/1.2733673
Herzog, 2010, Fluid Phase Equilib., 297, 23, 10.1016/j.fluid.2010.05.024
Rozmus, 2013, Ind. Eng. Chem. Res., 52, 9979, 10.1021/ie303527j
Maribo-Mogensen, 2012, Ind. Eng. Chem. Res., 51, 5353, 10.1021/ie2029943
Reschke, 2012, J. Phys. Chem. B, 116, 7479, 10.1021/jp3005629
Held, 2014, Chem. Eng. Res. Des., 92, 2884, 10.1016/j.cherd.2014.05.017
Nasrifar, 2010, Ind. Eng. Chem. Res., 49, 7620, 10.1021/ie901181n
Pahlavanzadeh, 2013, J. Chem. Thermodyn., 59, 214, 10.1016/j.jct.2012.12.021
Uyan, 2015, Fluid Phase Equilib., 393, 91, 10.1016/j.fluid.2015.02.026
Kucka, 2003, Chem. Eng. Sci., 58, 3571, 10.1016/S0009-2509(03)00255-0
Kale, 2013, Int. J. Greenhouse Gas Control, 17, 294, 10.1016/j.ijggc.2013.05.019
Yu, 2012, Aerosol Air Qual. Res., 12, 745, 10.4209/aaqr.2012.05.0132
Wang, 2015, Appl. Energy, 158, 275, 10.1016/j.apenergy.2015.08.083
Papadopoulos, 2016, Mol. Syst. Des. Eng., 1, 313, 10.1039/C6ME00049E
Closmann, 2009, Energy Procedia, 1, 1351, 10.1016/j.egypro.2009.01.177
European Commission, Final Report – CESAR (CO 2 Enhanced Separation and Recovery), Community Research and Development Information Service (CORDIS), http://cordis.europa.eu/publication/rcn/13962_en.html , accessed July 2017
Singh, 2008, Process Saf. Environ. Prot., 86, 347, 10.1016/j.psep.2008.03.005
Puxty, 2009, Environ. Sci. Technol., 43, 6427, 10.1021/es901376a
Bommareddy, 2010, Comput. Chem. Eng., 34, 1481, 10.1016/j.compchemeng.2010.02.015
Chemmangattuvalappil, 2013, Ind. Eng. Chem. Res., 52, 7090, 10.1021/ie302516v
Salazar, 2013, Energy Procedia, 37, 257, 10.1016/j.egypro.2013.05.110
Papadopoulos, 2014, Chem. Eng. Trans., 39, 211
Limleamthong, 2016, Green Chem., 18, 6468, 10.1039/C6GC01696K
Adjiman, 2014, Comput.-Aided Chem. Eng., 34, 55, 10.1016/B978-0-444-63433-7.50007-9
Schilling, 2017, Mol. Syst. Des. Eng., 2, 301, 10.1039/C7ME00026J
Bardow, 2010, Ind. Eng. Chem. Res., 49, 2834, 10.1021/ie901281w
Oyarzún, 2011, Energy Procedia, 4, 282, 10.1016/j.egypro.2011.01.053
Stavrou, 2014, Ind. Eng. Chem. Res., 53, 18029, 10.1021/ie502924h
Lampe, 2015, Comput. Chem. Eng., 81, 278, 10.1016/j.compchemeng.2015.04.008
F. E. Pereira , E.Keskes , A.Galindo , G.Jackson and C. S.Adjiman , Integrated design of CO2 capture processes from natural gas , Process Systems Engineering , Wiley-VCH Verlag GmbH & Co. KGaA , 2008 , pp. 231–248
Pereira, 2011, Comput. Chem. Eng., 35, 474, 10.1016/j.compchemeng.2010.06.016
Burger, 2015, AIChE J., 61, 3249, 10.1002/aic.14838
Gopinath, 2016, AIChE J., 62, 3484, 10.1002/aic.15411
Brand, 2012, Comput.-Aided Chem. Eng., 31, 930, 10.1016/B978-0-444-59506-5.50017-1
Arce, 2012, Int. J. Greenhouse Gas Control, 11, 236, 10.1016/j.ijggc.2012.09.004
Mac Dowell, 2013, Int. J. Greenhouse Gas Control, 13, 44, 10.1016/j.ijggc.2012.11.029
Alhajaj, 2016, Int. J. Greenhouse Gas Control, 44, 26, 10.1016/j.ijggc.2015.10.022
Brand, 2016, Faraday Discuss., 192, 337, 10.1039/C6FD00041J
Martynov, 2016, Int. J. Greenhouse Gas Control, 54, 652, 10.1016/j.ijggc.2016.08.010
IPCC , IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, UK and New York, NY, USA , 2005 , p. 442
ZEP, The costs of CO 2 transport: Post-demonstration CCS in the EU , Zero emissions platform (ZEP), 2011
Aspelund, 2007, Int. J. Greenhouse Gas Control, 1, 343, 10.1016/S1750-5836(07)00040-0
Aspelund, 2006, Chem. Eng. Res. Des., 84, 847, 10.1205/cherd.5147
McCoy, 2008, Int. J. Greenhouse Gas Control, 2, 219, 10.1016/S1750-5836(07)00119-3
Brown, 2015, Int. J. Greenhouse Gas Control, 43, 108, 10.1016/j.ijggc.2015.10.014
Skaugen, 2016, Int. J. Greenhouse Gas Control, 54, 627, 10.1016/j.ijggc.2016.07.025
A. Oosterkamp and J.Ramsen , State-of-the-art overview of CO 2 pipeline transport with relevance to offshore pipelines , January, Polytec, 2008
Chapoy, 2013, Int. J. Greenhouse Gas Control, 19, 92, 10.1016/j.ijggc.2013.08.019
Munkejord, 2016, Appl. Energy, 169, 499, 10.1016/j.apenergy.2016.01.100
Porter, 2015, Int. J. Greenhouse Gas Control, 36, 161, 10.1016/j.ijggc.2015.02.016
Liljemark, 2011, Energy Procedia, 4, 3040, 10.1016/j.egypro.2011.02.215
J. J. Moore , A.Lerche , H.Delgado , T.Allison and J.Pacheco , Proceedings of the Fortieth Turbomachinery Symposium , 2011 , pp. 107–120
Pei, 2014, Int. J. Greenhouse Gas Control, 30, 86, 10.1016/j.ijggc.2014.09.001
P. A. Calado , Modeling and design synthesis of a CCS compression train system via MINLP optimization , Tecnico Lisboa , 2012 , pp. 1–122
Witkowski, 2012, Arch. Mech. Eng., 59, 343, 10.2478/v10180-012-0018-x
Witkowski, 2013, Energy Convers. Manage., 76, 665, 10.1016/j.enconman.2013.07.087
Romeo, 2009, Appl. Therm. Eng., 29, 1744, 10.1016/j.applthermaleng.2008.08.010
Middleton, 2009, Energy Policy, 37, 1052, 10.1016/j.enpol.2008.09.049
Alhajaj, 2013, Energy Procedia, 37, 2552, 10.1016/j.egypro.2013.06.138
Lazic, 2013, Proc. Inst. Mech. Eng., Part E, 228, 210, 10.1177/0954408913500447
Fimbres Weihs, 2012, Int. J. Greenhouse Gas Control, 8, 150, 10.1016/j.ijggc.2012.02.008
Middleton, 2012, Comput., Environ. Urban Syst., 36, 18, 10.1016/j.compenvurbsys.2011.08.002
Roussanaly, 2013, Int. J. Greenhouse Gas Control, 19, 584, 10.1016/j.ijggc.2013.05.031
Wetenhall, 2014, Int. J. Greenhouse Gas Control, 30, 197, 10.1016/j.ijggc.2014.09.016
Chandel, 2010, Energy Convers. Manage., 51, 2825, 10.1016/j.enconman.2010.06.020
Knoope, 2014, Int. J. Greenhouse Gas Control, 22, 25, 10.1016/j.ijggc.2013.12.016
Wang, 2014, Int. J. Greenhouse Gas Control, 31, 165, 10.1016/j.ijggc.2014.10.010
Mac Dowell, 2015, Int. J. Greenhouse Gas Control, 48, 327, 10.1016/j.ijggc.2016.01.043
Chaczykowski, 2012, Int. J. Greenhouse Gas Control, 9, 446, 10.1016/j.ijggc.2012.05.007
Mechleri, 2017, Chem. Eng. Res. Des., 119, 130, 10.1016/j.cherd.2017.01.016
Cooper, 2014, Energy Procedia, 63, 2412, 10.1016/j.egypro.2014.11.264
Gale, 2004, Energy, 29, 1319, 10.1016/j.energy.2004.03.090
Shuter, 2011, Energy Procedia, 4, 2261, 10.1016/j.egypro.2011.02.115
S. Connolly and L.Cusco , IChemE Symposium Series , 2007, pp. 1–5
Woolley, 2014, Int. J. Greenhouse Gas Control, 27, 221, 10.1016/j.ijggc.2014.06.001
Witlox, 2011, Energy Procedia, 4, 2253, 10.1016/j.egypro.2011.02.114
M. Bilio , S.Brown , M.Fairweather and H.Mahgerefteh , CO 2 pipelines material and safety considerations, IChemE Symposium Series: Hazards XXI Process Safety and Environmental Protection, Manchester, 2009, pp. 423–429
Mahgerefteh, 2012, Chem. Eng. Sci., 74, 200, 10.1016/j.ces.2012.02.037
Cosham, 2008, Journal of Pipeline Engineering, 7, 115
W. A. Maxey , Fracture initiation, propagation and arrest, Proceedings of the 5th Symposium in Line Pressure Research, Houston, 1974
A. Cosham , D. G.Jones , K.Armstrong , D.Allason and J.Barnett , Analysis of two dense phase carbon dioxide full-scale fracture propagation tests, 10th International Pipeline Conference, American Society of Mechanical Engineers , 2014, pp. 1–15
Mahgerefteh, 2010, Journal of Pipeline Engineering, 9, 265
Nordhagen, 2012, Comput. Struct., 94-95, 13, 10.1016/j.compstruc.2012.01.004
Aursand, 2016, Eng. Struct., 123, 192, 10.1016/j.engstruct.2016.05.012
Roussanaly, 2014, Int. J. Greenhouse Gas Control, 28, 283, 10.1016/j.ijggc.2014.06.019
Knoope, 2015, Int. J. Greenhouse Gas Control, 41, 174, 10.1016/j.ijggc.2015.07.013
Kjärstad, 2016, Int. J. Greenhouse Gas Control, 54, 168, 10.1016/j.ijggc.2016.08.024
R. Skagestad , N.Eldrup , H. R.Hansen , S.Belfroid , A.Mathisen , A.Lach and H. A.Haugen , Ship transport of CO 2 , 3918, Tel-Tek, 2014
T. N. Vermeulen , Knowledge Sharing Report – CO 2 Liquid Logistics Shipping Concept (LLSC): Overall Supply Chain Optimization , Global CCS Institute (GCCSI), 2011
N. Rydberg and D.Langlet , CCS in the Baltic Sea region – Bastor 2 , Elforsk, 2014
Kolster, 2017, Int. J. Greenhouse Gas Control, 58, 127, 10.1016/j.ijggc.2017.01.014
Gale, 2015, Int. J. Greenhouse Gas Control, 40, 1, 10.1016/j.ijggc.2015.06.019
GCCSI, The global status of CCS: 2015 , Global CCS Institute, Melbourne, Australia, 2015
Duan, 2006, Mar. Chem., 98, 131, 10.1016/j.marchem.2005.09.001
Spycher, 2010, Transp. Porous Media, 82, 173, 10.1007/s11242-009-9425-y
Cadogan, 2014, J. Chem. Eng. Data, 59, 519, 10.1021/je401008s
Cadogan, 2015, J. Chem. Eng. Data, 60, 181, 10.1021/je5009203
Bando, 2004, J. Chem. Eng. Data, 49, 1328, 10.1021/je049940f
Fleury, 2008, J. Chem. Eng. Data, 53, 2505, 10.1021/je8002628
McBride-Wright, 2015, J. Chem. Eng. Data, 60, 171, 10.1021/je5009125
Calabrese, 2017, J. Chem. Eng. Data
Hebach, 2002, J. Chem. Eng. Data, 47, 1540, 10.1021/je025569p
Chiquet, 2007, Energy Convers. Manage., 48, 736, 10.1016/j.enconman.2006.09.011
Chalbaud, 2009, Adv. Water Resour., 32, 98, 10.1016/j.advwatres.2008.10.012
Georgiadis, 2010, J. Chem. Eng. Data, 55, 4168, 10.1021/je100198g
Chow, 2016, J. Chem. Thermodyn., 93, 392, 10.1016/j.jct.2015.08.006
Li, 2012, J. Chem. Eng. Data, 57, 1078, 10.1021/je201062r
Li, 2012, J. Chem. Eng. Data, 57, 1369, 10.1021/je300304p
Peng, 2015, Chem. Geol., 403, 74, 10.1016/j.chemgeo.2015.03.012
Peng, 2016, Faraday Discuss., 192, 545, 10.1039/C6FD00048G
Menke, 2015, Environ. Sci. Technol., 49, 4407, 10.1021/es505789f
K. S. Pedersen , P. L.Christensen and S. J.Azeem , Phase Behavior of Petroleum Reservoir Fluids , CRC Press , Boca Raton, FL, USA , Second edn, 2015 , p. 450
Iglauer, 2014, Int. J. Greenhouse Gas Control, 22, 325, 10.1016/j.ijggc.2014.01.006
Andrew, 2014, Adv. Water Resour., 68, 24, 10.1016/j.advwatres.2014.02.014
Singh, 2016, Water Resour. Res., 52, 1716, 10.1002/2015WR018072
S. Benson , R.Pini , C.Reynolds and S.Krevor , Relative permeability analyses to describe multi-phase flow in CO 2 storage reservoirs , Global CCS Institute, 2013
S. M. Benson , F.Hingerl , L.Zuo , R.Pini , S.Krevor , C.Reynolds , B.Niu , R.Calvo and A.Niemi , Relative permeability for multi-phase flow in CO 2 storage reservoirs. Part II: resolving fundamental issues and filling data gaps , Global CCS Institute, 2015
P. Egermann , C. A.Chalbaud , J.Duquerroix and Y.Le Gallo , An integrated approach to parameterize reservoir models for CO 2 injection in aquifers, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers , Paper SPE-102308-MS, San Antonio, Texas, USA, 2006
Manceau, 2015, Water Resour. Res., 51, 2885, 10.1002/2014WR015725
Niu, 2015, Water Resour. Res., 51, 2009, 10.1002/2014WR016441
Reynolds, 2015, Water Resour. Res., 51, 9464, 10.1002/2015WR018046
Krevor, 2015, Int. J. Greenhouse Gas Control, 40, 221, 10.1016/j.ijggc.2015.04.006
Al-Menhali, 2016, Environ. Sci. Technol., 50, 2727, 10.1021/acs.est.5b05925
Juanes, 2006, Water Resour. Res., 42, W12418, 10.1029/2005WR004806
Salathiel, 1973, J. Pet. Technol., 25, 1216, 10.2118/4104-PA
Spiteri, 2008, Soc. Pet. Eng. J., 13, 277
Al-Menhali, 2016, Environ. Sci. Technol., 50, 10282, 10.1021/acs.est.6b03111
Koelbl, 2014, Int. J. Greenhouse Gas Control, 27, 81, 10.1016/j.ijggc.2014.04.024
Perrin, 2010, Transp. Porous Media, 82, 93, 10.1007/s11242-009-9426-x
Krause, 2013, Transp. Porous Media, 98, 565, 10.1007/s11242-013-0161-y
Li, 2015, Adv. Water Resour., 83, 389, 10.1016/j.advwatres.2015.07.010
Rabinovich, 2015, J. Pet. Sci. Eng., 134, 60, 10.1016/j.petrol.2015.07.021
Meckel, 2015, Int. J. Greenhouse Gas Control, 34, 85, 10.1016/j.ijggc.2014.12.010
Krevor, 2011, Geophys. Res. Lett., 38, L15401, 10.1029/2011GL048239
Saadatpoor, 2010, Transp. Porous Media, 82, 3, 10.1007/s11242-009-9446-6
R. A. Chadwick and D. J.Noy , Geological Society, London, Petroleum Geology Conference series , 2010, 7, pp. 1171–1182
Cavanagh, 2014, Int. J. Greenhouse Gas Control, 21, 101, 10.1016/j.ijggc.2013.11.017
Hovorka, 2006, Environ. Geosci., 13, 105, 10.1306/eg.11210505011
Lu, 2012, J. Geophys. Res.: Solid Earth, 117, B03208, 10.1029/2011JB008939
A. C. Gringarten , Evolution of reservoir management techniques: From independent methods to an integrated methodology. Impact on petroleum engineering curriculum, graduate teaching and competitive advantage of oil companies, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Society of Petroleum Engineers , Paper SPE-39713-MS, Kuala Lumpur, Malaysia, 1998
M. A. Flett , G. J.Beacher , J.Brantjes , A. J.Burt , C.Dauth , F. M.Koelmeyer , R.Lawrence , S.Leigh , J.McKenna , R.Gurton , W. F.Robinson and T.Tankersley , Gorgon Project: Subsurface evaluation of carbon dioxide disposal under Barrow Island. SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers , Paper SPE-116372-MS, Perth, Australia, 2008
Flett, 2009, Energy Procedia, 1, 3031, 10.1016/j.egypro.2009.02.081
Shell, Peterhead CCS Project Storage Development Plan, Document number PCCS-00-PT-AA-5726-00001 , Shell UK Limited, 2015
ETI, Progressing Development of the UK's Strategic Carbon Dioxide Storage Resource , Energy Technologies Institute (ETI), Pale Blue Dot Energy & Axis Well Technology, 2016
Verdon, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, E2762, 10.1073/pnas.1302156110
White, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 8747, 10.1073/pnas.1316465111
Grude, 2014, Int. J. Greenhouse Gas Control, 27, 178, 10.1016/j.ijggc.2014.05.013
Chadwick, 2009, Pet. Geosci., 15, 59, 10.1144/1354-079309-793
Shell, Quest carbon capture and storage project reaches significant one-year milestone , Shell Canada News Press Release, http://www.shell.ca/en_ca/media/news-and-media-releases/news-releases-2016/shell_s-quest-carbon-capture-and-storage-project-reaches-signifi.html , accessed October 2016
Bergmo, 2014, Energy Procedia, 63, 5114, 10.1016/j.egypro.2014.11.541
Birkholzer, 2012, Int. J. Greenhouse Gas Control, 7, 168, 10.1016/j.ijggc.2012.01.001
Buscheck, 2012, Int. J. Greenhouse Gas Control, 6, 230, 10.1016/j.ijggc.2011.11.007
Cihan, 2015, Int. J. Greenhouse Gas Control, 42, 175, 10.1016/j.ijggc.2015.07.025
Qi, 2009, Int. J. Greenhouse Gas Control, 3, 195, 10.1016/j.ijggc.2008.08.004
Leonenko, 2008, Environ. Sci. Technol., 42, 2742, 10.1021/es071578c
Burton, 2009, SPE Reservoir Eval. Eng., 12, 399, 10.2118/110650-PA
Jenkins, 2015, Int. J. Greenhouse Gas Control, 40, 312, 10.1016/j.ijggc.2015.05.009
R. A. Chadwick , R.Arts and O.Eiken , Geological Society, London, Petroleum Geology Conference series , 2005, 6 , pp. 1385–1399
Pevzner, 2015, Geophysics, 80, B105, 10.1190/geo2014-0460.1
Ghaderi, 2009, Geophysics, 74, O17, 10.1190/1.3054659
Trani, 2011, Geophysics, 76, C1, 10.1190/1.3549756
Ajo-Franklin, 2013, Int. J. Greenhouse Gas Control, 18, 497, 10.1016/j.ijggc.2012.12.018
Dance, 2016, Int. J. Greenhouse Gas Control, 47, 210, 10.1016/j.ijggc.2016.01.042
Gilfillan, 2009, Nature, 458, 614, 10.1038/nature07852
Gilfillan, 2011, Int. J. Greenhouse Gas Control, 5, 1507, 10.1016/j.ijggc.2011.08.008
Myers, 2013, Appl. Geochem., 30, 125, 10.1016/j.apgeochem.2012.06.001
LaForce, 2014, Int. J. Greenhouse Gas Control, 26, 9, 10.1016/j.ijggc.2014.04.009
Cameron, 2016, Int. J. Greenhouse Gas Control, 52, 32, 10.1016/j.ijggc.2016.06.014
Lewicki, 2007, Geophys. Res. Lett., 34, L24402, 10.1029/2007GL032047
Shitashima, 2015, Int. J. Greenhouse Gas Control, 38, 135, 10.1016/j.ijggc.2014.12.011
Bickle, 2013, Rev. Mineral. Geochem., 77, 15, 10.2138/rmg.2013.77.2
Manceau, 2014, Int. J. Greenhouse Gas Control, 22, 272, 10.1016/j.ijggc.2014.01.007
Esposito, 2012, Int. J. Greenhouse Gas Control, 7, 62, 10.1016/j.ijggc.2011.12.002
Vialle, 2016, Int. J. Greenhouse Gas Control, 44, 11, 10.1016/j.ijggc.2015.10.007
Pacala, 2004, Science, 305, 968, 10.1126/science.1100103
S. M. Benson , K.Bennaceur , P.Cook , J.Davison , H.de Coninck , K.Farhat , A.Ramirez , D.Simbeck , T.Surles , P.Verma and I.Wright , Carbon Capture and Storage , Global Energy Assessment–Toward a Sustainable Future , 2012 , ch. 13, pp. 993–1068
Dooley, 2012, Energy Procedia, 37, 5141, 10.1016/j.egypro.2013.06.429
G. Cook and P.Zakkour , CCS deployment in the context of regional developments in meeting long-term climate change objectives, Report 2015/TR3 , IEA Greenhouse Gas R&D Programme (IEAGHG), 2015
Bachu, 2015, Int. J. Greenhouse Gas Control, 40, 188, 10.1016/j.ijggc.2015.01.007
Birkholzer, 2015, Int. J. Greenhouse Gas Control, 40, 203, 10.1016/j.ijggc.2015.03.022
M. Winkler , R.Abernathy , M.Nicolo , H.Huang , A.Wang , S.Zhang , A.Simon , C.Clark , S.Crouch , H.De Groot , R.El Mahdy , M.Smith , S.Malik , S.Bourne , R.Pierpont and V.Hugonet , The dynamic aspect of formation-storage use for CO 2 sequestration, SPE International Conference on CO 2 Capture, Storage, and Utilization, Society of Petroleum Engineers, Paper SPE-139730-MS, New Orleans, Louisiana, USA, 2010
Goodman, 2013, Int. J. Greenhouse Gas Control, 18, 329, 10.1016/j.ijggc.2013.07.016
Thibeau, 2011, Oil Gas Sci. Technol., 66, 81, 10.2516/ogst/2011004
Bader, 2014, Energy Procedia, 63, 2779, 10.1016/j.egypro.2014.11.300
Gorecki, 2015, Int. J. Greenhouse Gas Control, 42, 213, 10.1016/j.ijggc.2015.07.018
A. Lothe , B. U.Emmel , P.Bergmo , G. M.Mortensen and P.Frykman , Updated estimate of storage capacity and evaluation of Seal for selected Aquifers (D26), NORDICCS Technical Report D 6.3.1401 (D26) , Nordic CCS Competence Centre (NORDICCS), 2015
Nordbotten, 2005, Transp. Porous Media, 58, 339, 10.1007/s11242-004-0670-9
Zhou, 2008, Int. J. Greenhouse Gas Control, 2, 626, 10.1016/j.ijggc.2008.02.004
Mathias, 2009, Transp. Porous Media, 79, 265, 10.1007/s11242-008-9316-7
Golding, 2011, J. Fluid Mech., 678, 248, 10.1017/jfm.2011.110
Szulczewski, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 5185, 10.1073/pnas.1115347109
Huang, 2014, Int. J. Greenhouse Gas Control, 20, 73, 10.1016/j.ijggc.2013.11.004
Agada, 2017, Int. J. Greenhouse Gas Control, 65, 128, 10.1016/j.ijggc.2017.08.014
Kolster, 2018, Int. J. Greenhouse Gas Control, 68, 77, 10.1016/j.ijggc.2017.10.011
Global CCS Institute, CCS images, Understanding CCS Resources , http://www.globalccsinstitute.com/understanding-ccs/information-resource , Melbourne, Australia , accessed January 2017
Gozalpour, 2005, Oil Gas Sci. Technol., 60, 537, 10.2516/ogst:2005036
Chen, 2010, J. Can. Pet. Technol., 49, 75, 10.2118/141650-PA
Mac Dowell, 2017, Nat. Clim. Change, 7, 243, 10.1038/nclimate3231
IEA, Storing CO 2 through enhanced oil recovery-Combining EOR with CO 2 storage (EOR+) for profit , International Energy Agency Insights Series, Paris, France, 2015
B. Hitchon , Best Practices for Validating CO2 Geological Storage: Observations and Guidance from the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project , Geoscience Publishing Ltd. , Sherwood Park, Alberta, Canada , 2012
MIT, Weyburn-Midale Fact Sheet: Carbon Dioxide Capture and Storage Project , https://sequestration.mit.edu/tools/projects/weyburn.html , Carbon Capture and Sequestration Technologies program at MIT, 2016
MIT, Boundary Dam Fact Sheet: Carbon Dioxide Capture and Storage Project , https://sequestration.mit.edu/tools/projects/boundary_dam.html , Carbon Capture and Sequestration Technologies program at MIT, 2016
van Bergen, 2004, Energy, 29, 1611, 10.1016/j.energy.2004.03.063
M. L. Godec , Global technology roadmap for CCS in industry: Sectoral assessment CO2 enhanced oil recovery , Advanced Resources International, Inc. and United Nations Industrial Development Organization (UNIDO) , 2011
J. J. Dooley , R. T.Dahowski , C. L.Davidson , M. A.Wise , N.Gupta , S. H.Kim , E. L.Malone and B. M.Institute , Carbon dioxide capture and geologic storage: A core element of a global energy technology strategy to address climate change , The Global Energy Technology Strategy Program, Battelle Memorial Institute , USA , 2006
IEA , Technology roadmap: Carbon capture and storage , International Energy Agency , Paris, France , 2013 , 2013 edn
CIA , The World Factbook , https://www.cia.gov/library/publications/the-world-factbook/rankorder/2241rank.html , Central Intelligence Agency, United States , 2014
Rystad Energy , UCube Upstream Database , https://www.rystadenergy.com/Products/EnP-Solutions/UCube , Oslo, Norway , 2017
Kolster, 2017, Energy Environ. Sci., 10, 2594, 10.1039/C7EE02102J
QCCSRC, Qatar Carbonates and Carbon Storage Research Centre , http://www.imperial.ac.uk/qatar-carbonates-and-carbon-storage , Imperial College London, UK, 2017
Mazzotti, 2009, J. Supercrit. Fluids, 47, 619, 10.1016/j.supflu.2008.08.013
Li, 2015, J. Nat. Gas Sci. Eng., 26, 1607, 10.1016/j.jngse.2014.08.010
Ersland, 2009, Energy Procedia, 1, 3477, 10.1016/j.egypro.2009.02.139
LEILAC, Low Emissions Intensity Lime & Cement, A European Union Horizon 2020 Research & Innovation Project , http://www.project-leilac.eu/ , Calix Europe Ltd, 2017
Peters, 2011, ChemSusChem, 4, 1216, 10.1002/cssc.201000447
Quadrelli, 2011, ChemSusChem, 4, 1194, 10.1002/cssc.201100473
Markewitz, 2012, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d
Otto, 2015, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E
Aresta, 2014, Chem. Rev., 114, 1709, 10.1021/cr4002758
Cuellar-Franca, 2015, J. CO2 Util., 9, 82, 10.1016/j.jcou.2014.12.001
Centi, 2013, Energy Environ. Sci., 6, 1711, 10.1039/c3ee00056g
Klankermayer, 2016, Angew. Chem., Int. Ed., 55, 7296, 10.1002/anie.201507458
Scott, 2015, Chem. Eng. News, 93, 10, 10.1021/cen-09345-cover
Goeppert, 2012, Energy Environ. Sci., 5, 7833, 10.1039/c2ee21586a
Sanna, 2014, Chem. Soc. Rev., 43, 8049, 10.1039/C4CS00035H
von der Assen, 2016, Environ. Sci. Technol., 50, 1093, 10.1021/acs.est.5b03474
Langanke, 2014, Green Chem., 16, 1865, 10.1039/C3GC41788C
von der Assen, 2014, Green Chem., 16, 3272, 10.1039/C4GC00513A
Sternberg, 2016, ACS Sustainable Chem. Eng., 4, 4156, 10.1021/acssuschemeng.6b00644
van der Giesen, 2014, Environ. Sci. Technol., 48, 7111, 10.1021/es500191g
European Commission Joint Research Centre and Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook-General guide for Life Cycle Assessment-Detailed guidance , Publications Office of the European Union , Luxembourg , 1st edn, 2010
von der Assen, 2013, Energy Environ. Sci., 6, 2721, 10.1039/c3ee41151f
Levasseur, 2010, Environ. Sci. Technol., 44, 3169, 10.1021/es9030003
Peters, 2011, Environ. Sci. Technol., 45, 8633, 10.1021/es200627s
Brandão, 2013, Int. J. Life Cycle Assess., 18, 230, 10.1007/s11367-012-0451-6
Bruhn, 2016, Environ. Sci. Policy, 60, 38, 10.1016/j.envsci.2016.03.001
Thenert, 2016, Angew. Chem., Int. Ed., 55, 12266, 10.1002/anie.201606427
Lumpp, 2011, MTZ worldwide eMagazine, 72, 34, 10.1365/s38313-011-0027-z
Schmitz, 2016, Fuel, 185, 67, 10.1016/j.fuel.2016.07.085
Meylan, 2015, J. CO2 Util., 12, 101, 10.1016/j.jcou.2015.05.003
IEA, Key world energy statistics , International Energy Agency, www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf , 2017
K. Gutmann , J.Huscher , D.Urbaniak , A.White , C.Schaible and M.Bricke , Europe's Dirty 30: How the EU's coal-fired power plants are undermining its climate efforts , Climate Action Network (CAN)Europe, Health and Environment Alliance (HEAL), WWF European Policy Office, European Environmental Bureau (EEB) and Climate Alliance Germany, Brussels, Belgium, 2014
Aresta, 2013, J. CO2 Util., 3–4, 65, 10.1016/j.jcou.2013.08.001
Mitchell, 2015, AIChE J., 61, 2374, 10.1002/aic.14910
Naims, 2016, Environ. Sci. Pollut. Res., 23, 22226, 10.1007/s11356-016-6810-2
Sternberg, 2015, Energy Environ. Sci., 8, 389, 10.1039/C4EE03051F
Dimitriou, 2015, Energy Environ. Sci., 8, 1775, 10.1039/C4EE04117H
Carbon Recycling International, World's Largest CO 2 Methanol Plant , Kopavogur, Iceland, http://carbonrecycling.is/george-olah/2016/2/14/worlds-largest-co2-methanol-plant , accessed March 2017
Roh, 2016, Int. J. Greenhouse Gas Control, 47, 250, 10.1016/j.ijggc.2016.01.028
Götz, 2016, Renewable Energy, 85, 1371, 10.1016/j.renene.2015.07.066
Pérez-Fortes, 2016, Appl. Energy, 161, 718, 10.1016/j.apenergy.2015.07.067
Klankermayer, 2016, Philos. Trans. R. Soc., A, 374, 1, 10.1098/rsta.2015.0315
Kiss, 2016, Chem. Eng. J., 284, 260, 10.1016/j.cej.2015.08.101
Rönsch, 2016, Fuel, 166, 276, 10.1016/j.fuel.2015.10.111
Scott, 2017, ChemSusChem, 10, 1085, 10.1002/cssc.201601814
C. M. Jens , L.Müller , K.Leonhard and A.Bardow , To integrate or not to integrate – Techno-economic and life cycle assessment of CO2 capture and conversion to methyl formate using methanol , The Royal Society of Chemistry, submitted
Martin, 2015, Green Chem., 17, 5114, 10.1039/C5GC01893E
Herron, 2016, Energy Technol., 4, 1369, 10.1002/ente.201600163
Machhammer, 2016, Chem. Eng. Technol., 39, 1185, 10.1002/ceat.201600023
Postels, 2016, Int. J. Hydrogen Energy, 41, 23204, 10.1016/j.ijhydene.2016.09.167
Yuan, 2016, Ind. Eng. Chem. Res., 55, 3383, 10.1021/acs.iecr.5b03277
Leitner, 2017, Angew. Chem., Int. Ed., 56, 5412, 10.1002/anie.201607257
Grinberg Dana, 2016, Angew. Chem., Int. Ed., 55, 8798, 10.1002/anie.201510618
Sharifzadeh, 2015, Renewable Sustainable Energy Rev., 47, 151, 10.1016/j.rser.2015.03.001
Pan, 2016, J. Cleaner Prod., 137, 617, 10.1016/j.jclepro.2016.07.112
OECD , OECD Environmental Outlook for the Chemicals Industry , Organisation for Economic Co-operation and Development , Paris, France , 2001
Earles, 2011, Int. J. Life Cycle Assess., 16, 445, 10.1007/s11367-011-0275-9
Kätelhön, 2016, Environ. Sci. Technol., 50, 12575, 10.1021/acs.est.6b04270
Leitner, 1995, Angew. Chem., Int. Ed., 34, 2207, 10.1002/anie.199522071
Moret, 2014, Nat. Commun., 5, 4017, 10.1038/ncomms5017
Schaub, 2011, Angew. Chem., Int. Ed., 50, 7278, 10.1002/anie.201101292
Pérez-Fortes, 2016, Int. J. Hydrogen Energy, 41, 16444, 10.1016/j.ijhydene.2016.05.199
Beydoun, 2014, Angew. Chem., Int. Ed., 53, 11010, 10.1002/anie.201403711
Tlili, 2015, Green Chem., 17, 157, 10.1039/C4GC01614A
Leino, 2010, Appl. Catal., A, 383, 1, 10.1016/j.apcata.2010.05.046
Garcia-Herrero, 2016, ACS Sustainable Chem. Eng., 4, 2088, 10.1021/acssuschemeng.5b01515
North, 2010, Green Chem., 12, 1514, 10.1039/c0gc00065e
Kember, 2011, Chem. Commun., 47, 141, 10.1039/C0CC02207A
Zhu, 2016, Nature, 540, 354, 10.1038/nature21001
Jens, 2016, Green Chem., 18, 5621, 10.1039/C6GC01202G
von der Assen, 2014, Chem. Soc. Rev., 43, 7982, 10.1039/C3CS60373C
von der Assen, 2015, Faraday Discuss., 183, 291, 10.1039/C5FD00067J
Pawelzik, 2013, Resour., Conserv. Recycl., 73, 211, 10.1016/j.resconrec.2013.02.006
Jones, 2015, Faraday Discuss., 183, 327, 10.1039/C5FD00063G
van Heek, 2017, Energy Policy, 105, 53, 10.1016/j.enpol.2017.02.016
InfoCuria, Judgement of the Court (First Chamber) of 19 January 2017, Schaefer Kalk GmbH & Co. KG versus Bundesrepublik Deutschland. Document ECLI:EU:C:2017:29 , Case-law of the Court of Justice, http://curia.europa.eu/juris/liste.jsf?language=en&num=C-460/15 , 2017
Wright, 1936, J. Aeronaut. Sci., 3, 122, 10.2514/8.155
Boston Consulting Group, Perspectives on Experience , Boston Consulting Group Inc., Boston, MA, United States , 1972
Yeh, 2012, Energy Econ., 34, 762, 10.1016/j.eneco.2011.11.006
Rubin, 2007, Int. J. Greenhouse Gas Control, 1, 188, 10.1016/S1750-5836(07)00016-3
Rubin, 2015, Energy Policy, 86, 198, 10.1016/j.enpol.2015.06.011
Li, 2012, Appl. Energy, 93, 348, 10.1016/j.apenergy.2011.12.046
van den Broek, 2009, Prog. Energy Combust. Sci., 35, 457, 10.1016/j.pecs.2009.05.002
M. Monea , Plenary presentation, 12th International Conference on Greenhouse Gas Control Technologies (GHGT-12), Austin, Texas, US, 2014
J. Schwartz , High-Stakes Test for Carbon Capture , New York Times, 3 January, 2017
Canadell, 2014, Nat. Commun., 5, 5282, 10.1038/ncomms6282
Kemper, 2015, Int. J. Greenhouse Gas Control, 40, 401, 10.1016/j.ijggc.2015.06.012
Archer Daniels Midland Company, ADM Begins Operations for Second Carbon Capture and Storage Project , https://www.adm.com/news/news-releases/adm-begins-operations-for-second-carbon-capture-and-storage-project-1 , accessed June 2017
Gollakota, 2012, Greenhouse Gases: Sci. Technol., 2, 346, 10.1002/ghg.1305
Finley, 2014, Greenhouse Gases: Sci. Technol., 4, 571, 10.1002/ghg.1433
Jones, 2014, Greenhouse Gases: Sci. Technol., 4, 617, 10.1002/ghg.1438
H. Karlsson and L.Byström , Global Status of BECCS Projects 2010 , Global CCS Institute and Biorecro, https://www.globalccsinstitute.com/publications/global-status-beccs-projects-2010 , 2011
K. Whiriskey , Carbon dioxide removal-Necessary but unloved. Insight to upcoming report on CO 2 removal. Presentation, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13) , Lausanne, Switzerland, 2016
Woolf, 2010, Nat. Commun., 1, 56, 10.1038/ncomms1053
IEAGHG, Potential for Biomass and Carbon Dioxide Capture and Storage. Report 2011/06 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2011
IEAGHG, Potential for Biomethane Production and Carbon Dioxide Capture and Storage. Report 2013/11 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2013
McLaren, 2012, Process Saf. Environ. Prot., 90, 489, 10.1016/j.psep.2012.10.005
van Vuuren, 2013, Clim. Change, 118, 15, 10.1007/s10584-012-0680-5
Arasto, 2014, Energy Procedia, 63, 6756, 10.1016/j.egypro.2014.11.711
B. Caldecott , G.Lomax and M.Workman , Stranded carbon assets and negative emissions technologies. Working paper, Smith School of Enterprise and the Environment , University of Oxford, 2015
NRC, Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration , National Research Council and National Academy of Sciences, The National Academies Press , Washington, DC, United States , 2015
Global Carbon Project, Global Carbon Atlas: CO 2 emissions , accessed March 2017
Keith, 2006, Clim. Change, 74, 17, 10.1007/s10584-005-9026-x
S. Rose , R.Beach , K.Calvin , B.McCarl , J.Petrusa , B.Sohngen , R.Youngman , A.Diamant , F.de la Chesnaye , J.Edmonds , R.Rosenzweig and M.Wise , Estimating global greenhouse gas emissions offset supplies: Accounting for investment risks and other market realties , Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2013
Smith, 2013, Clim. Change, 118, 89, 10.1007/s10584-012-0682-3
L. Clarke , K.Jiang , K.Akimoto , M.Babiker , G.Blanford , K.Fisher-Vanden , J.-C.Hourcade , V.Krey , E.Kriegler , A.Löschel , D.McCollum , S.Paltsev , S.Rose , P. R.Shukla , M.Tavoni , B.van der Zwaan and D.van Vuuren , Assessing Transformation Pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA , 2014
H. Chum , A.Faaij , J.Moreira , G.Berndes , P.Dharnija , H.Dong and B.Gabrielle , Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, UK, New York, NY, USA , 2011 , pp. 209–332
R. Slade , R.Saunders , R.Gross and A.Bauen , Energy from biomass: the size of the global resource. An assessment of the evidence that biomass can make a major contribution to future global energy supply , Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London, United Kingdom, 2011
IEA and FAO, How2Guide for Bioenergy: Roadmap Development and Implementation , International Energy Agency and the Food and Agriculture Organisation of the United Nations, 2017
FAO, Food wastage footprint: Impacts on natural resources. Summary report , Food and Agriculture Organization (FAO) of the United Nations, http://www.fao.org/docrep/018/i3347e/i3347e.pdf , 2013
Welfle, 2014, Biomass Bioenergy, 70, 249, 10.1016/j.biombioe.2014.08.001
J. Seay and F.You , 4-Biomass supply, demand, and markets, Biomass Supply Chains for Bioenergy and Biorefining , Woodhead Publishing , 2016 , pp. 85–100
D. Yue and F.You , 7-Biomass and biofuel supply chain modeling and optimization, Biomass Supply Chains for Bioenergy and Biorefining , Woodhead Publishing , 2016 , pp. 149–166
European Environment Agency (EEA), Opinion of the EEA Scientific Committee on Greenhouse Gas Accounting in Relation to Bioenergy , 2011
T. Searchinger and R.Heimlich , Avoiding bioenergy competition for food crops and land, Working paper, Installment 9 of Creating a Sustainable Food Future , World Resources Institute, Washington, DC, United States, 2015
Hartmann, 2008, Naturwissenschaften, 95, 1159, 10.1007/s00114-008-0434-4
R. Socolow , M.Desmond , R.Aines , J.Blackstock , O.Bolland , T.Kaarsberg , N.Lewis , M.Mazzotti , A.Pfeffer , K.Sawyer , J.Siirola , B.Smit and J.Wilcox , Direct Air Capture of CO2 with Chemicals-A Technology Assessment for the APS Panel on Public Affairs , American Physical Society (APS) Physics, 2011
Schuiling, 2006, Clim. Change, 74, 349, 10.1007/s10584-005-3485-y
S. Wood , K.Sebastian and S. J.Scherr , Pilot analysis of global ecosystems: Agroecosystems , International Food Policy Research Institute and World Resources Institute, Washington, DC, United States, 2000
Kang, 2013, J. Agric. Sci., 5, 129
FAOSTAT, FAOSTAT land database , accessed February 2017
Campbell, 2008, Environ. Sci. Technol., 42, 5791, 10.1021/es800052w
Fritz, 2013, Environ. Sci. Technol., 47, 1688
Lackner, 2010, Sci. Am., 302, 66, 10.1038/scientificamerican0610-66
Kriegler, 2013, Clim. Change, 118, 45, 10.1007/s10584-012-0681-4
P. Smith , M.Bustamante , H.Ahammad , H.Clark , H.Dong , E.Elsiddig , H.Haberl , R.Harper , J.House , M.Jafari , O.Masera , C.Mbow , N.Ravindranath , C.Rice , C.Robledo Abad , A.Romanovskaya , F.Sperling and F.Tubiello , Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the FifthAssessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA , 2014
M. Fajardy , Investigating the water-energy-carbon and land nexus of bio-energy and CCS (BECCS). Presentation, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13) , Lausanne, Switzerland, 2016
Mac Dowell, 2016, Faraday Discuss., 192, 241, 10.1039/C6FD00051G
M. Flugge , J.Lewandrowski , J.Rosenfeld , C.Boland , T.Hendrickson , K.Jaglo , S.Kolansky , K.Moffroid , M.Riley-Gilbert and D.Pape , A life-cycle analysis of the greenhouse gas emissions of corn-based ethanol. Report prepared by ICF under USDA Contract No. AG-3142-D-16-0243 , US Department of Agriculture, Climate Change Program Office, Washington, DC, https://www.usda.gov/oce/climate_change/mitigation_technologies/USDAEthanolReport_20170107.pdf , 2017
Thomson, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 19633, 10.1073/pnas.0910467107
J. Gustavsson , C.Cederberg , U.Sonesson , R.van Otterdijk and A.Meybeck , Global food losses and food waste-Extent, causes and prevention , Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy, http://www.fao.org/docrep/014/mb060e/mb060e00.pdf , 2011
HLPE, Food losses and waste in the context of sustainable food systems , High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome, Italy, 2014
Al-Qayim, 2015, Int. J. Greenhouse Gas Control, 43, 82, 10.1016/j.ijggc.2015.10.013
M. Pourkashanian , J.Szuhanszki and K.Finney , BECCS-Technical challenges and opportunities. Presentation, UKCCSRC BECCS Specialist Meeting, London , 2016
C. Gough and P.Upham , Biomass energy with carbon capture and storage (BECCS): A review. Working Paper 147 , The Tyndall Centre, University of Manchester, Manchester Institute of Innovation Research, 2010
Luckow, 2010, Int. J. Greenhouse Gas Control, 4, 865, 10.1016/j.ijggc.2010.06.002
C. Hamelinck , Fact checks for the biofuels sustainability debate , Ecofys Webinar, http://www.slideshare.net/Ecofys/factsheets-on-the-sustainability-of-biofuels , 2014
IEAGHG, Biomass and CCS-Guidance for accounting for negative emissions. Report 2014/05 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2014
J. Dooley , Keynote II-3, Industrial CO 2 removal: CO 2 capture from ambient air and geological. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering , IPCC Working Group III Technical Support Unit, Potsdam Institute for Climate Impact Research, Potsdam, Germany , 2012, pp. 30–33
Lomax, 2015, Energy Policy, 78, 125, 10.1016/j.enpol.2014.10.002
Meerman, 2013, Int. J. Greenhouse Gas Control, 16, 311, 10.1016/j.ijggc.2013.01.051
Thomas, 2010, Land Use Policy, 27, 880, 10.1016/j.landusepol.2009.12.002
R. Sands , S.Malcolm , S.Suttles and E.Marshall , Dedicated energy crops and competition for agricultural land, ERR-223 , U.S. Department of Agriculture, Economic Research Service, 2017
Wise, 2009, Science, 324, 1183, 10.1126/science.1168475
P. Upham and T.Roberts , Public perceptions of CCS: the results of Near CO 2 European focus groups , Tyndall Centre, The University of Manchester, accessed March 2015, 2010
Mander, 2011, Energy Procedia, 4, 6360, 10.1016/j.egypro.2011.02.653
Dowd, 2015, Energies, 8, 4024, 10.3390/en8054024
Peters, 2016, Elementa, 4, 000116
J. Ranganathan , D.Vennard , R.Waite , B.Lipinski , T.Searchinger , P.Dumas , A.Forslund , H.Guyomard , S.Manceron , E.Marajo-Petitzon , C.Le Mouël , P.Havlik , M.Herrero , X.Zhang , S.Wirsenius , F.Ramos , X.Yan , M.Phillips and R.Mungkung , Shifting diets for a sustainable food future. Working paper, Installment 11 of Creating a Sustainable Food Future , World Resources Institute, Washington, DC, United States, 2016
Wirsenius, 2010, Agr. Syst., 103, 621, 10.1016/j.agsy.2010.07.005
C. Mooney , The suddenly urgent quest to remove carbon dioxide from the air , The Washington Post, 2016
D. Biello , 400 PPM: Can Artificial Trees Help Pull CO 2 from the Air? , Scientific American, 2013
E. Kolbert , Can carbon-dioxide removal save the world? , The New Yorker, 2017
Sucking up carbon, Greenhouse gases must be scrubbed from the air , The Economist, 2017
M. Gunther , Startups have figured out how to remove carbon from the air. Will anyone pay them to do it? , The Guardian, 2015
M. K. McNutt , W.Abdalati , K.Caldeira , S. C.Doney , P. G.Falkowski , S.Fetter , J. R.Fleming , S. P.Hamburg , G.Morgan , J. E.Penner , R. T.Pierrehumbert , P. J.Rasch , L. M.Russell , J. T.Snow , D. W.Titley and J.Wilcox , Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration , The National Academies Press , Washington, D. C., USA , 2015
Holmes, 2012, Philos. Trans. R. Soc., A, 370, 4380, 10.1098/rsta.2012.0137
Mazzotti, 2013, Clim. Change, 118, 119, 10.1007/s10584-012-0679-y
Lackner, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 13156, 10.1073/pnas.1108765109
Wilcox, 2014, Energy Environ. Sci., 7, 1769, 10.1039/c4ee00001c
Stolaroff, 2008, Environ. Sci. Technol., 42, 2728, 10.1021/es702607w
Zeman, 2007, Environ. Sci. Technol., 41, 7558, 10.1021/es070874m
Mahmoudkhani, 2009, Int. J. Greenhouse Gas Control, 3, 376, 10.1016/j.ijggc.2009.02.003
Rubin, 2007, Energy Policy, 35, 4444, 10.1016/j.enpol.2007.03.009
Rubin, 2015, Int. J. Greenhouse Gas Control, 40, 378, 10.1016/j.ijggc.2015.05.018
Wilcox, 2017, Environ. Res. Lett., 12, 065001, 10.1088/1748-9326/aa6de5
EU, Brussels European Council 8/9 March 2007 Presidency Conclusions , Council of the European Union, 2007
P. Dixon and T.Mitchell , Lesson Learned: Lessons and Evidence Derived from UK CCS Programmes, 2008–2015 , Carbon Capture and Storage Association, 2016
TUC, The economic benefits of carbon capture and storage in the UK , Carbon Capture & Storage Association (CCSA) & Trades Union Congress (TUC), 2014
NAO, Briefing for the House of Commons Environmental Audit Committee: Sustainability in the spending review , National Audit Office, 2016
D. Radov , A.Carmel , H.Fearnehough , C.Koenig , S.Forrest , G.Strbac , M.Aunedi and D.Pudjianto UK Renewable Subsidies and Whole System Costs: The Case for Allowing Biomass Conversion for a CfD , NERA Economic Consulting & Imperial College London , 2016
DECC, CCS Cost Reduction Taskforce Final Report , UK Carbon Capture and Storage Cost Reduction Task Force, London, UK, 2013
DECC, CCS Roadmap: Supporting deployment of carbon capture and storage in the UK , Department of Energy & Climate Change, 2012
Capture Power Limited, White Rose: K.04 Full-chain FEED lessons learnt , White Rose Carbon Capture & Storage Project, Department of Energy and Climate Change, 2016
Capture Power Limited, White Rose: K.01 Full chain FEED summary report , White Rose Carbon Capture & Storage Project, Department of Energy and Climate Change, 2016
SCCS, CO 2 storage and Enhanced Oil Recovery in the North Sea: Securing a low-carbon future for the UK , Scottish Carbon Capture & Storage, 2015
E. Davey , Government agreement on energy policy sends clear, durable signal to investors , Department of Energy & Climate Change, https://www.gov.uk/government/news/government-agreement-on-energy-policy-sends-clear-durable-signal-to-investors , 2012
Kitschelt, 1986, Br. J. Polit. Sci., 16, 57, 10.1017/S000712340000380X
Kennedy, 2007, Science, 316, 515, 10.1126/science.1142978
Krohn, 1999, Renewable Energy, 16, 954, 10.1016/S0960-1481(98)00339-5
Stern, 2016, Nature Climate Change, 6, 547, 10.1038/nclimate3027
Ashworth, 2015, Int. J. Greenhouse Gas Control, 40, 449, 10.1016/j.ijggc.2015.06.002
IEA, Carbon capture and storage: The solution for deep emissions reductions , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA), Paris, France, 2015
GCCSI, The global status of CCS: 2016 summary report , Global CCS Institute, Melbourne, Australia, 2016
IEA, Energy and Climate Change: World Energy Outlook Special Briefing for COP21 , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA), Paris, France, 2015
GCCSI and UNIDO, Carbon capture and storage in industrial applications: Technology synthesis report , Global CCS Institute and United Nations Industrial Development Organization (UNIDO), Vienna, 2010
CAN, Climate Action Network Europe (CAN Europe) position paper on CO 2 capture and storage , http://www.caneurope.org/publications/can-europe-positions/90-carbon-capture-and-storage , 2006
E. Rochon , E.Bjureby , P.Johnston , R.Oakley , D.Santillo , N.Schulz and G.von Goerne , False Hope: Why carbon capture and storage won't save the climate , Greenpeace International , Amsterdam, The Netherlands , 2008
Terwel, 2012, Int. J. Greenhouse Gas Control, 9, 41, 10.1016/j.ijggc.2012.02.017
Cuppen, 2015, Environment and Planning A, 47, 1963, 10.1177/0308518X15597408
Tjernshaugen, 2011, Environ. Polit., 20, 227, 10.1080/09644016.2011.551029
Buhr, 2011, Global Environ. Change, 21, 336, 10.1016/j.gloenvcha.2011.01.021
A. Doyle , Norway drops carbon capture plan it had likened to “Moon landing” , Reuters, http://www.reuters.com/article/us-norway-carbon-idUSBRE98J0QB20130920 , 2013
G. Fouche , Norway says could achieve full carbon capture and storage by 2022, Reuters , http://www.reuters.com/article/us-norway-ccs-idUSKCN0ZK1LW , 2016
S. Ansolobehere , J.Beer , J.Deutch , A. D.Ellerman , S. J.Friedman , H.Herzog , H. D.Jacoby , P. L.Joskow , G.McRae , R.Lester , E. J.Moniz and E.Steinfeld , The future of coal: Options for a carbon-constrained world , Massachusetts Institute of Technology (MIT) , Cambridge, MA, US , 2007
NAO, Carbon capture and storage: lessons from the competition for the first UK demonstration , National Audit Office (NAO), 2012
Committee of Public Accounts, Carbon Capture and Storage inquiry, Sixty-fourth Report of Session 2016–17, 28 April 2017 , House of Commons, London, UK, https://publications.parliament.uk/pa/cm201617/cmselect/cmpubacc/1036/1036.pdf , accessed July 2017
R. Syal , Carbon capture scheme collapsed 'over government department disagreements', The Guardian, https://www.theguardian.com/environment/2017/jan/20/carbon-capture-scheme-collapsed-over-government-department-disagreements , 2017
Krüger, 2017, Energy Policy, 100, 58, 10.1016/j.enpol.2016.09.059
de Coninck, 2008, Energy Policy, 36, 929, 10.1016/j.enpol.2007.11.013
Wara, 2007, Nature, 445, 595, 10.1038/445595a
Lupion, 2013, Int. J. Greenhouse Gas Control, 19, 19, 10.1016/j.ijggc.2013.08.009
R. Oxburgh , Parliamentary Debate, House of Lords, 9 September 2015, column 1443 , http://www.publications.parliament.uk/pa/ld201516/ldhansrd/text/150909-0001.htm , accessed December 2016
McGlashan, 2007, J. Mech. Eng. Sci., 221, 1057, 10.1243/09544062JMES424
J. Fisher , A.Zoelle , M.Turner and V.Chou , Quality Guidelines for Energy System Studies: Performing a Techno-economic Analysis for Power Generation Plants , National Energy Technology Laboratory (NETL), 2015
T. Fout , A.Zoelle , D.Keairns , L.Pinkerton , M.Turner , M.Woods , N.Kuehn , V.Shah and V.Chou , Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3 , National Energy Technology Laboratory, 2015
M. Matuszewski , J.Ciferno , J.Marano and S.Chen , Research and Development Goals for CO2 Capture Technology , National Energy Technology Laboratory, https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=817 , 2011
D. C. Miller , D. A.Agarwal , D.Bhattacharyya , J.Boverhof , Y. W.Cheah , Y.Chen , J.Eslick , J.Leek , J.Ma , P.Mahapatra , B.Ng , N.Sahinidis , C.Tong and S. E.Zitney , Innovative computational tools and models for the design, optimization of control of carbon capture processes, 26th European Symposium on Computer Aided Process Engineering (ESCAPE 26), Computer Aided Chemical Engineering , 2016, pp. 2391–2396