Thu hồi và lưu trữ carbon (CCS): Hướng đi tới

Energy and Environmental Science - Tập 11 Số 5 - Trang 1062-1176
Mai Bui1,2,3,4, Claire S. Adjiman3,5,6,7, André Bardow8,9,10,11, Edward J. Anthony12,13,14,15, Andy Boston16,17, Solomon Brown18,19,20, Paul S. Fennell6,21,22, Sabine Fuss23,10,24, Amparo Galindo3,5,6,7, Leigh A. Hackett25,26,27, Jason P. Hallett6,21,22, Howard J. Herzog28,29, George Jackson6,21,22, Jasmin Kemper30,31, Samuel Krevor32,21,7,33, Geoffrey C. Maitland6,22,34,33, Michael Matuszewski35,36,37, Ian S. Metcalfe38,39,40, Camille Petit6,21,22, Graeme Puxty41,42,43, Jeffrey A. Reimer44,45,46, David Reiner28,47,48,49, Edward S. Rubin50,51,36, Stuart A. Scott52,53,54, Nilay Shah3,5,6,7, Berend Smit44,45,55,46, J. P. Martin Trusler6,22,34,33, Paul A. Webley41,56,57,58,59, Jennifer Wilcox60,61,62, Niall Mac Dowell1,2,3,4
1Centre for Environmental Policy, Imperial College London, South Kensington, London SW7 1NA, UK
2Centre for Process Systems Engineering
3Centre for Process Systems Engineering, Imperial College London, South Kensington, London SW7 2AZ UK
4London SW7 1NA
5Department of Chemical Engineering
6Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
7London SW7 2AZ
852056 Aachen
9Chair of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany
10Germany
11RWTH Aachen University
12Bedford.
13Carbon Capture & Storage
14Centre for Combustion, Carbon Capture & Storage, Cranfield University, Bedford, Bedfordshire MK43 0AL, UK
15Cranfield University,
16Loughborough
17Red Vector Ltd., Barrow Upon Soar, Loughborough, Leics LE12 8JY, UK
18Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK
19Sheffield S1 3JD
20The University of Sheffield
21Imperial College London
22London
2310829 Berlin
24Mercator Research Institute on Global Commons and Climate Change, 10829 Berlin, Germany
25Industria Mundum AG
26Switzerland
27Zürich
28Cambridge
29Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
30Cheltenham
31IEA Greenhouse Gas R&D Programme (IEAGHG), Pure Offices, Cheltenham Office Park, Hatherley Lane, Cheltenham, Gloucestershire, UK
32Department of Earth Science & Engineering, Imperial College London, South Kensington, London, UK
33Qatar Carbonates and Carbon Storage Research Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
34Qatar Carbonates and Carbon Storage Research Centre
35National Energy Technology Laboratory (NETL)
36Pittsburgh
37US Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
38Newcastle University
39Newcastle-upon-Tyne NE1 7RU
40School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
41Australia
42CSIRO Energy, Mayfield West, New South Wales 2304, Australia
43Mayfield West
44Berkeley
45Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
46University of California, Berkeley
47Energy Policy Research Group, Judge Business School, University of Cambridge, Cambridge, UK
48Judge Business School
49University of Cambridge
50Carnegie Mellon University
51Engineering & Public Policy and Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
52Cambridge CB2 1PZ
53Department of Engineering
54University of Cambridge, Department of Engineering, Cambridge CB2 1PZ, UK
55Laboratory of Molecular Simulation
56Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia
57The Peter Cook Centre for Carbon Capture and Storage
58The Peter Cook Centre for Carbon Capture and Storage, The University of Melbourne, Victoria 3010, Australia
59The University of Melbourne
60Chemical and Biological Engineering Department, Colorado School of Mines, Golden, Colorado 80401, USA
61Colorado School of Mines
62Golden

Tóm tắt

Thu hồi và lưu trữ carbon (CCS) rất quan trọng trong việc giảm thiểu biến đổi khí hậu và có ứng dụng trên nhiều lĩnh vực trong nền kinh tế, đồng thời hỗ trợ việc loại bỏ carbon dioxide trong bầu khí quyển, dẫn đến việc giảm lượng phát thải và tạo ra lượng phát thải âm ròng. Bài viết này xem xét trạng thái hiện tại của công nghệ và xác định những thách thức chính cần phải vượt qua để mở đường cho việc triển khai quy mô lớn.

Từ khóa


Tài liệu tham khảo

Mac Dowell, 2010, Energy Environ. Sci., 3, 1645, 10.1039/c004106h

Boot-Handford, 2014, Energy Environ. Sci., 7, 130, 10.1039/C3EE42350F

COP21 Paris Agreement , European Commission, http://ec.europa.eu/clima/policies/international/negotiations/paris/index_en.htm

GCCSI, Large-scale CCS projects , Global CCS Institute, http://www.globalccsinstitute.com/projects/large-scale-ccs-projects , accessed July 2017

BEIS, UK carbon capture and storage: Government funding and support , Department for Business, Energy & Industrial Strategy (BEIS), London, UK, https://www.gov.uk/guidance/uk-carbon-capture-and-storage-government-funding-and-support , accessed June 2017

IPCC , Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA , 2014

A. Cousins , L.Wardhaugh and A.Cottrell , Pilot plant operation for liquid absorption-based post-combustion CO2 capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge, UK , 2016 , pp. 649–684

R. Sanchez , Technology Readiness Assessment Guide , U.S. Department of Energy , Washington, DC , 2011 , https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1

GCCSI , CO2 capture technologies: Technology options for CO2 capture , Global CCS Institute , Canberra, Australia , 2012 , https://www.globalccsinstitute.com/publications/technology-options-co2-capture

NDA , Guide to Technology Readiness Levels for the NDA Estate and its Supply Chain , Nuclear Decommissioning Authority , Cumbria, UK , 2014 , https://www.gov.uk/government/news/guidance-on-technology-readiness-levels

Campbell, 2014, Energy Procedia, 63, 801, 10.1016/j.egypro.2014.11.090

Singh, 2014, Energy Procedia, 63, 1678, 10.1016/j.egypro.2014.11.177

DOE, Petra Nova – W.A. Parish Project, Office of Fossil Energy, U.S. Department of Energy (DOE), http://energy.gov/fe/petra-nova-wa-parish-project , accessed May 2017

MIT, Petra Nova W.A. Parish Fact Sheet: Carbon Dioxide Capture and Storage Project , Carbon Capture and Sequestration Technologies program at MIT, 2016, https://sequestration.mit.edu/tools/projects/wa_parish.html

MTR, PolarisTM membrane: CO2 removal from syngas , Membrane Technology & Research, http://www.mtrinc.com/co2_removal_from_syngas.html , accessed June 2017

Chemical Processing, Air Products and NTNU Enter Licensing Agreement for Carbon Capture Technology , 2017

J. Owen-Jones , Grand opening of Climeworks commercial DAC plant , Gasworld, 2017, https://www.gasworld.com/grand-opening-worlds-first-dac-plant/2012895.article

Climeworks, Climeworks launches world's first commercial plant to capture CO 2 from air , Press Release, 2017, http://www.climeworks.com/wp-content/uploads/2017/05/01_PR-Climeworks-DAC-Plant-Opening.pdf

D. Wagman , The three factors that doomed Kemper County IGCC, IEEE Spectrum , 2017, http://spectrum.ieee.org/energywise/energy/fossil-fuels/the-three-factors-that-doomed-kemper-county-igcc , accessed July 2017

Mississippi Power, Mississippi Power issues statement regarding Kemper County energy facility progress and schedule , MississippiPower News Center, http://mississippipowernews.com/2017/02/22/mississippi-power-issues-statement-regarding-kemper-county-energy-facility-progress-and-schedule-2/ , accessed May 2017

K. E. Swartz , Southern Co.'s clean coal plant hits a dead end, E&E News - Energywire , 2017, https://www.eenews.net/stories/1060056418 , accessed July 2017

P. Noothout , F.Wiersma , O.Hurtado , P.Roelofsen and D.Macdonald , CO2 Pipeline Infrastructure, IEA Greenhouse Gas R&D Programme (IEAGHG) , 2014, http://ieaghg.org/docs/General_Docs/Reports/2013-18.pdf

P. Brownsort , Ship transport of CO2 for Enhanced Oil Recovery-Literature survey , January, Scottish Carbon Capture & Storage (SCCS)

Gou, 2014, Acta Geotechnica, 9, 49, 10.1007/s11440-013-0221-z

GCCSI, Projects Database: CO 2 utilisation , Global CCS Institute, https://www.globalccsinstitute.com/projects/co2-utilisation-projects , accessed July 2017

GCCSI, Saga City Waste Incineration Plant , Global CCS Institute, 2016, http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/content/page/122975/files/Saga%20City%20Waste%20Incineration%20Plant_0.pdf

GCCSI, Strategic analysis of the global status of carbon capture and storage. Report 1: Status of carbon capture and storage projects globally , Global CCS Institute, 2009

D. van Vuuren , E.Kriegler , K.Riahi , M.Tavoni , B. S.Koelbl and M.van Sluisveld , The use of carbon capture and storage in mitigation scenarios—An integrated assessment modelling perspective. Our Common Future Under Climate Change , International Scientific Conference , Paris, France , 2015

Benhelal, 2013, J. Cleaner Prod., 51, 142, 10.1016/j.jclepro.2012.10.049

Fuss, 2014, Nat. Clim. Change, 4, 850, 10.1038/nclimate2392

F. Kraxner , S.Fuss , V.Krey , D.Best , S.Leduc , G.Kindermann , Y.Yamagata , D.Schepaschenko , A.Shvidenko , K.Aoki and J.Yan , The role of bioenergy with carbon capture and storage (BECCS) for climate policy , John Wiley & Sons, Ltd , UK , 2015 , vol. 3, pp. 1465–1484

Koelbl, 2014, Clim. Change, 123, 461, 10.1007/s10584-013-1050-7

C. Hendriks , W.Graus and F.van Bergen , Global carbon dioxide storage potential and costs, Ecofys and TNO , Utrecht, The Netherlands , 2004 , http://www.ecofys.com/files/files/ecofys_2004_globalcarbondioxidestorage.pdf

Riahi, 2004, Energy Econ., 26, 539, 10.1016/j.eneco.2004.04.024

Kurosawa, 2004, Energy Econ., 26, 675, 10.1016/j.eneco.2004.04.022

Scott, 2013, Nat. Clim. Change, 3, 105, 10.1038/nclimate1695

van Noorden, 2013, Nature, 493, 141, 10.1038/493141a

Reiner, 2016, Nat. Energy, 1, 15011, 10.1038/nenergy.2015.11

T. Spencer , R.Pierfederici , H.Waisman , M.Colombier , C.Bertram , E.Kriegler , G.Luderer , F.Humpenöder , A.Popp , O.Edenhofer , M. D.Elzen , D.van Vuuren , H.van Soest , L.Paroussos , P.Fragkos , M.Kainuma , T.Masui , K.Oshiro , K.Akimoto , B. S.Tehrani , F.Sano , J.Oda , L.Clarke , G.Iyer , J.Edmonds , T.Fei , F.Sha , J.Kejun , A. C.Köberle , A.Szklo , A. F. P.Lucena , J.Portugal-Pereira , P.Rochedo , R.Schaeffe , A.Awasthy , M. K.Shrivastava , R.Mathur , J.Rogelj , J.Jewell , K.Riah , A.Garg and I. M. P. Consortium , Beyond the numbers: Understanding the transformation induced by INDCs. Study Number 05/15 , IDDRI – MILES Project Consortium , Paris, France , 2015

IEA , 20 Years of carbon capture and storage: Accelerating future deployment , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA) , Paris, France , 2016

Upham, 2011, Int. J. Greenhouse Gas Control, 5, 1359, 10.1016/j.ijggc.2011.06.005

Reiner, 2006, Environ. Sci. Technol., 40, 2093, 10.1021/es052010b

Löschel, 2002, Ecol. Econ., 43, 105, 10.1016/S0921-8009(02)00209-4

IPCC , in Climate Change 2014: Synthesis Report of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , ed. Core Writing Team , R. K. Pachauri and L. Meyer , Intergovernmental Panel on Climate Change (IPCC) , 2014

Peters, 2015, Environ. Res. Lett., 10, 105004, 10.1088/1748-9326/10/10/105004

GCP, Global Carbon Budget 2016 , Global Carbon Project, 2016, http://www.globalcarbonproject.org/carbonbudget/16/files/GCP_CarbonBudget_2016.pdf

Le Quéré, 2016, Earth Syst. Sci. Data, 8, 605, 10.5194/essd-8-605-2016

Azar, 2010, Clim. Change, 100, 195, 10.1007/s10584-010-9832-7

Heuberger, 2016, Energy Environ. Sci., 9, 2497, 10.1039/C6EE01120A

Heuberger, 2017, Comput. Chem. Eng., 107, 247, 10.1016/j.compchemeng.2017.05.012

Riahi, 2015, Technol. Forecase. Soc., 90, 8, 10.1016/j.techfore.2013.09.016

Peters, 2016, Nat. Clim. Change, 6, 646, 10.1038/nclimate3000

UNFCCC , Adoption of the Paris Agreement , United Nations Framework Convention on Climate Change (UNFCCC), Paris, France , 2015, http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf , accessed December 2016

Rogelj, 2015, Nat. Clim. Change, 5, 519, 10.1038/nclimate2572

Luderer, 2013, Environ. Res. Lett., 8, 34033, 10.1088/1748-9326/8/3/034033

Smith, 2016, Global Change Biol., 22, 1315, 10.1111/gcb.13178

DeVries, 2017, Nature, 542, 215, 10.1038/nature21068

Eisaman, 2012, Energy Environ. Sci., 5, 7346, 10.1039/c2ee03393c

Willauer, 2014, Ind. Eng. Chem. Res., 53, 12192, 10.1021/ie502128x

Smith, 2016, Nat. Clim. Change, 6, 42, 10.1038/nclimate2870

FAO , Land under cereal production (hectares) , Food and Agriculture Organization, The World Bank Group, http://data.worldbank.org/indicator/AG.LND.CREL.HA , accessed July 2017

Fajardy, 2017, Energy Environ. Sci., 10, 1389, 10.1039/C7EE00465F

T. Bruckner , I. A.Bashmakov , Y.Mulugetta , H.Chum , A.de la Vega Navarro , J.Edmonds , A.Faaij , B.Fungtammasan , A.Garg , E.Hertwich , D.Honnery , D.Infield , M.Kainuma , S.Khennas , S.Kim , H. B.Nimir , K.Riahi , N.Strachan , R.Wiser and X.Zhang , Energy Systems , in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press , 2014

IPCC , Proposed outline of the IPCC special report on the impacts of global warming of 1.5 °C , Forty-fourth session of the Intergovernmental Panel on Climate Change (IPCC) , Bangkok, Thailand , 2016

J. Strefler , N.Bauer , T.Amann , E.Kriegler and J.Hartmann , Enhanced weathering and BECCS-are carbon dioxide removal technologies complements or substitutes? International Energy Workshop, 2015

House, 2011, Proc. Natl. Acad. Sci. U. S. A., 108, 20428, 10.1073/pnas.1012253108

Kraxner, 2014, Renewable Energy, 61, 102, 10.1016/j.renene.2012.09.064

Clack, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 6722, 10.1073/pnas.1610381114

Fuss, 2016, Environ. Res. Lett., 11, 115007, 10.1088/1748-9326/11/11/115007

C. F. Heuberger , I.Staffell , N.Shah and N.Mac Dowell , Levelised value of technology-A systemic approach to technology valuation, 26th European Symposium on Computer Aided Process Engineering (ESCAPE 26) , Computer Aided Chemical Engineering 38, 2016 , pp. 721–726

G. Strbac , M.Aunedi , D.Pudjianto , P.Djapic , S.Gammons and R.Druce , Understanding the Balancing Challenge, report for the Department of Energy and Climate Change (DECC) , Imperial College London and NERA Economic Consulting , London, UK , 2012

G. Strbac , M.Aunedi , D.Pudjianto , P.Djapic , F.Teng , A.Sturt , D.Jackravut , R.Sansom , V.Yufit and N.Brandon , Strategic Assessment of the Role and Value of Energy Storage Systems in the UK Low Carbon Energy Future , Energy Futures Lab, Imperial College London, 2012, https://www.carbontrust.com/media/129310/energy-storage-systems-role-value-strategic-assessment.pdf

Pudjianto, 2014, IEEE Trans. Smart Grid, 5, 1098, 10.1109/TSG.2013.2282039

Richels, 2008, Energy Econ., 30, 2930, 10.1016/j.eneco.2008.06.005

Nelson, 2012, Energy Policy, 43, 436, 10.1016/j.enpol.2012.01.031

Koltsaklis, 2014, Appl. Energy, 115, 456, 10.1016/j.apenergy.2013.10.042

Wierzbowski, 2016, Appl. Energy, 169, 93, 10.1016/j.apenergy.2016.02.003

Green, 2016, Oxford Review of Economic Policy, 32, 282, 10.1093/oxrep/grw003

Climate Change Act, Part 1: Carbon target and budgeting , Parliament of the United Kingdom, 2008, http://www.legislation.gov.uk/ukpga/2008/27/pdfs/ukpga_20080027_en.pdf

Energy Act 2013 – Chapter 32, Department of Energy & Climate Change , Parliament of the United Kingdom, 2013

CCC, Fourth carbon budget review – Part 2: The cost-effective path to the 2050 target , Committee on Climate Change (CCC), London, UK, 2013, https://www.theccc.org.uk/wp-content/uploads/2013/12/1785a-CCC_AdviceRep_Singles_1.pdf

CCC, The Fifth Carbon Budget: The next step towards a low-carbon economy , Committee on Climate Change (CCC), London, UK, 2015, https://www.theccc.org.uk/wp-content/uploads/2015/11/Committee-on-Climate-Change-Fifth-Carbon-Budget-Report.pdf

CCC, Sectoral scenarios for the Fifth Carbon Budget: Technical report , Committee on Climate Change (CCC), London, UK, 2015, https://www.theccc.org.uk/wp-content/uploads/2015/11/Sectoral-scenarios-for-the-fifth-carbon-budget-Committee-on-Climate-Change.pdf

CCC, Meeting Carbon Budgets-2016 Progress Report to Parliament , Committee on Climate Change, London, UK, 2016, https://www.theccc.org.uk/publication/meeting-carbon-budgets-2016-progress-report-to-parliament/

House of Lords, The EU's Target forRenewable Energy: 20% by 2020, 27th report of session 2007–08 , European Union Committee, House of Lords, London, UK, 2008, https://www.publications.parliament.uk/pa/ld200708/ldselect/ldeucom/175/175.pdf

2Co Energy, Making the business case for CCS , Global CCS Institute, 2Co Energy, European Union, 2012, http://www.globalccsinstitute.com/publications/making-business-case-ccs

BEIS , Digest of United Kingdom energy statistics 2016 , National Statistics, Department for Business, Energy & Industrial Strategy, London, UK , 2016

CCC , Power sector scenarios for the fifth carbon budget , Committee on Climate Change (CCC), London, UK , 2015, https://www.theccc.org.uk/publication/power-sector-scenarios-for-the-fifth-carbon-budget/

Page, 2016, i-manager's Journal on Power Systems Engineering, 4, 1

Jacobson, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 15060, 10.1073/pnas.1510028112

F. Genoese , E.Drabik and C.Egenhofer , The EU power sector needs long-term price signals, Special report number 135 , Centre for European Policy Studies (CEPS) Energy Climate House , Brussels, Belgium , 2016

R. Gross , P.Heptonstall , D.Anderson , T.Green , M.Leach and J.Skea , The costs and impacts of intermittency: An assessment of the evidence on the costs and impacts of intermittent generation on the British electricity network , UK Energy Research Centre, Imperial College London, UK , 2006, http://www.ukerc.ac.uk/programmes/technology-and-policy-assessment/the-intermittency-report.html

A. Boston and H. K.Thomas , Managing flexibility whilst decarbonising the GB electricity system, Energy Research Partnership , London, UK , 2015, http://erpuk.org/project/managing-flexibility-of-the-electricity-sytem/

K. Foy , Electricity Generation Cost Model – 2013 Update of Non-Renewable Technologies, Report number 3512649A , Parsons Brinckerhoff, Prepared for Department of Energy and Climate Change (DECC) , UK , 2013

J. Munro and H.Windebank , Electricity Generation Costs Model – 2013 Update of Renewable Technologies, Report number 3511633B , Parsons Brinckerhoff, Prepared for Department of Energy and Climate Change (DECC) , UK , 2013

DECC , Oral statement to parliament: Agreement reached on new nuclear power station at Hinkley , Department of Energy & Climate Change (DECC), UK , 2013, https://www.gov.uk/government/speeches/agreement-reached-on-new-nuclear-power-station-at-hinkley

DECC , Press release: Initial agreement reached on new nuclear power station at Hinkley , Department of Energy & Climate Change (DECC), UK , 2013, https://www.gov.uk/government/news/initial-agreement-reached-on-new-nuclear-power-station-at-hinkley

Ofgem, Renewables Obligation (RO) , https://www.ofgem.gov.uk/environmental-programmes/ro , accessed October 2016

E. Durusut , S.Slater , S.Murray and P.Hare , CCS Sector Development Scenarios in the UK, Final report prepared for the Energy Technologies Institute , Element Energy and Pöyry, 2015, http://www.eti.co.uk/library/ccs-sector-development-scenarios-in-the-uk

R. Oxburgh , Lowest cost decarbonisation for the UK: The critical role of CCS , Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS), 2016

Elexon, Electricity generation data for Great Britain from the National Grid, reported during 2012 , 2014

JRC , Photovoltaic geographic information system, web tool for photovoltaic output , European Commission, Joint Research Centre (JRC), Brussels, Belgium , 2014, http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

National Grid, UK Future Energy Scenarios – July 2013 edition , Warwick, UK, 2013, http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=10451

DECC, National Renewable Energy Action Plan for the United Kingdom, Article 4 of the Renewable Energy Directive 2009/28/EC , Department of Energy & Climate Change, United Kingdom, 2009

Haines, 2009, Energy Procedia, 1, 1457, 10.1016/j.egypro.2009.01.191

Chalmers, 2007, Fuel, 86, 2109, 10.1016/j.fuel.2007.01.028

Cohen, 2012, Int. J. Greenhouse Gas Control, 8, 180, 10.1016/j.ijggc.2012.02.011

Patiño-Echeverri, 2012, Environ. Sci. Technol., 46, 1243, 10.1021/es202164h

van der Wijk, 2014, Int. J. Greenhouse Gas Control, 28, 216, 10.1016/j.ijggc.2014.06.014

Van Peteghem, 2014, Int. J. Greenhouse Gas Control, 21, 203, 10.1016/j.ijggc.2013.12.010

Mac Dowell, 2015, Comput. Chem. Eng., 74, 169, 10.1016/j.compchemeng.2015.01.006

Mechleri, 2017, Int. J. Greenhouse Gas Control, 59, 24, 10.1016/j.ijggc.2016.09.018

Tranier, 2011, Energy Procedia, 4, 966, 10.1016/j.egypro.2011.01.143

Hu, 2013, Appl. Energy, 112, 747, 10.1016/j.apenergy.2012.12.001

C. F. Heuberger , I.Staffell , N.Shah and N.Mac Dowell , Valuing Flexibility in CCS Power Plant. Final report on the FlexEVAL project , International Energy Agency Greenhouse Gas R&D Programme (IEAGHG), 2017, http://www.ieaghg.org/exco_docs/2017-09.pdf

J. P. Birat , Steel sectoral report, contribution to the UNIDO roadmap on CCS (fifth draft). Prepared for the UNIDO Global Technology Roadmap for CCS in Industry-Sectoral Experts Meeting in Amsterdam, 24 September 2010 , 2010

A. Carpenter , CO2 abatement in the iron and steel industry, report CCC/193 , IEA Clean Coal Centre, London, UK , 2012

GCCSI, Global status of CCS. Special report: Introduction to industrial carbon capture and storage , Global CCS Institute, Melbourne, Australia, 2016

D. Leeson , P.Fennell , N.Shah , C.Petit and N.Mac Dowell , A techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries. 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland. Energy Procedia, 2016

Leeson, 2017, Int. J. Greenhouse Gas Control, 61, 71, 10.1016/j.ijggc.2017.03.020

Napp, 2014, Renewable Sustainable Energy Rev., 30, 616, 10.1016/j.rser.2013.10.036

IEA and UNIDO, Technology roadmap: Carbon capture and storage in industrial applications , International Energy Agency and United Nations Industrial Development Organisation, 2011, http://www.iea.org/publications/freepublications/publication/ccs_industry.pdf , accessed February 2017

M. Bui , I.Gunawan , V.Verheyen and E.Meuleman , Dynamic operation of liquid absorbent-based postcombustion CO2 capture plants , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 589–621

N. Mahasenan and D. R.Brown , Beyond the big picture: Characterizaton of CO 2 -laden streams and implications for capture technologies, 7th International Conference on Greenhouse Gas Control Technologies, Oxford, UK, 2005, pp. 1817–1820

Hasan, 2012, Ind. Eng. Chem. Res., 51, 15642, 10.1021/ie301571d

Hasan, 2012, Ind. Eng. Chem. Res., 51, 15665, 10.1021/ie301572n

Fais, 2016, Appl. Energy, 162, 699, 10.1016/j.apenergy.2015.10.112

Arasto, 2013, Int. J. Greenhouse Gas Control, 16, 271, 10.1016/j.ijggc.2012.08.018

Wiley, 2011, Energy Procedia, 4, 2654, 10.1016/j.egypro.2011.02.165

Tsupari, 2013, Int. J. Greenhouse Gas Control, 16, 278, 10.1016/j.ijggc.2012.08.017

Kuramochi, 2012, Prog. Energy Combust. Sci., 38, 87, 10.1016/j.pecs.2011.05.001

Pardo, 2013, Energy, 54, 113, 10.1016/j.energy.2013.03.015

Porzio, 2013, Appl. Energy, 112, 818, 10.1016/j.apenergy.2013.05.005

Brunke, 2014, Energy Policy, 67, 431, 10.1016/j.enpol.2013.12.024

Karali, 2014, Appl. Energy, 120, 133, 10.1016/j.apenergy.2014.01.055

Moya, 2013, J. Cleaner Prod., 52, 71, 10.1016/j.jclepro.2013.02.028

J. P. Birat , Carbon dioxide (CO2) capture and storage technology in the iron and steel industry , in Developments and innovation in carbon dioxide (CO2) capture and storage technology, Carbon dioxide (CO2) capture, transport and industrial applications , Woodhead Publishing Ltd. , Cambridge, UK , 2010 , vol. 1

Kuramochi, 2011, Energy Procedia, 4, 1981, 10.1016/j.egypro.2011.02.079

Posco and Primetals Technologies, The Finex process: Economic and environmentally safe ironmaking , Posco Ltd. (Incheon, South Korea) and Primetals Technologies Ltd. (Linz, Austria), 2015, http://primetals.com/en/technologies/ironmaking/finex% C2%AE/Lists/FurtherInformation/The%20Finex%20process.pdf , accessed March 2017

K. Meijer , C.Guenther and R. J.Dry , HIsarna Pilot Plant Project , METEC Conference, Germany, 2011, http://www.riotinto.com/documents/_Iron%20Ore/HIsarna_0711_METEC_Conference.pdf

J. van der Stel , K.Meijer , C.Teerhuis , C.Zeijlstra , G.Keilman and M.Ouwehand , Update to the Developments of HIsarna: An ULCOS alternative ironmaking process , IEAGHG/IETS Iron and steel industry CCUS and process integration workshop, IEA Greenhouse Gas R&D Programme, 2013

GCCSI, Abu Dhabi CCS Project (Phase 1 being Emirates Steel Industries (ESI) CCS Project) , Global CCS Institute, 2016, https://www.globalccsinstitute.com/projects/abu-dhabi-ccs-project-phase-1-being-emirates-steel-industries-esi-ccs-project

Globalcement.com, CEMENT 101-An introduction to the World's most important building material , accessed February 2017

Hills, 2016, Environ. Sci. Technol., 50, 368, 10.1021/acs.est.5b03508

Dean, 2011, Chem. Eng. Res. Des., 89, 836, 10.1016/j.cherd.2010.10.013

Dean, 2011, Energy Environ. Sci., 4, 2050, 10.1039/c1ee01282g

IEA, Global action to advance carbon capture and storage: A focus on industrial applications-Annex to tracking clean energy progress , International Energy Agency, 2013, https://www.iea.org/publications/freepublications/publicat ion/CCS_Annex.pdf

O. Graff , CCS in Aker Solutions with focus on cement industry , Norcem International CCS Conference, 2015

Zeman, 2006, International Cement Review, 55

ECRA, TR-ECRA-119/2012 Technical Report on Phase III of ECRA CCS Project , European Cement Research Academy, 2012, https://www.ecra-online.org/fileadmin/redaktion/files/pdf/ECRA_Technical_Report_CCS_Phase_III.pdf , accessed 15/02/17

Zheng, 2016, Faraday Discuss., 192, 113, 10.1039/C6FD00032K

Dean, 2013, Energy Procedia, 37, 7078, 10.1016/j.egypro.2013.06.644

Telesca, 2014, Fuel, 118, 202, 10.1016/j.fuel.2013.10.060

T. Hills , M.Sceats , D.Rennie and P.Fennell , LEILAC: Low cost CO 2 capture for the cement and lime industries, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland, Energy Procedia, 2016

S. Evans , Around the world in 22 carbon capture projects, CarbonBrief Clear on Climate, 2014, https://www.carbonbrief.org/around-the-world-in-22-carbon-capture-projects

Barker, 2009, Energy Procedia, 1, 87, 10.1016/j.egypro.2009.01.014

Romano, 2014, Energy Procedia, 61, 500, 10.1016/j.egypro.2014.11.1158

Romano, 2013, Energy Procedia, 37, 7091, 10.1016/j.egypro.2013.06.645

Liang, 2012, Energy Convers. Manage., 64, 454, 10.1016/j.enconman.2012.04.012

DECC, Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050 , prepared by Parsons Brinkerhoff and DNV GL for UK Departments of Energy and Climate Change and Business, Innovation and Skills, 2015

T. A. Napp , K. S.Sum , T.Hills and P.Fennell , Attitudes and barriers to deployment of CCS from industrial sources in the UK-Grantham Report 6 , Grantham Institute for Climate Change, Imperial College London, 2014, https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/institute-reports-and-analytical-notes/Attitudes-and-Barriers-to-CCS-GR6.pdf

Bjerge, 2014, Energy Procedia, 63, 6455, 10.1016/j.egypro.2014.11.680

Chang, 2014, Energy Procedia, 63, 2100, 10.1016/j.egypro.2014.11.226

M. Schneider , ECRA's Oxyfuel project , Norcem International CCS Conference, Langesund, Norway , 2015

OGCI, Oil and Gas Climate Initiative (OGCI) , accessed January 2017

S. Nyquist and J.Ruys , CO 2 abatement: Exploring options for oil and natural gas companies , McKinsey & Company: Oil & Gas, 2010, http://www.mckinsey.com/industries/oil-and-gas/our-insights/co2-abatement-exploring-options-for-oil-and-natural-gas-companies

Macrotrends, Crude Oil Prices-70 Year Historical Chart , accessed January 2017

Guilford, 2011, Sustainability, 3, 1866, 10.3390/su3101866

Bredeson, 2010, Int. J. Life Cycle Assess., 15, 817, 10.1007/s11367-010-0204-3

I. Palou-Rivera , J.Han and M.Wang , Updates to petroleum refining and upstream emissions , Center for Transportation Research Argonne National Laboratory, 2011, https://greet.es.anl.gov/files/petroleum , accessed January 2017

K. Harland , H.Pershad , S.Slater , G.Cook and J.Watt , Potential for the application of CCS to UK industry and natural gas power generation. Final report, Issue 3, prepared for Committee on Climate Change , Element Energy Limited, Cambridge UK, 2010, http://www.element-energy.co.uk/wordpress/wp-content/uploads/2012/05/CCS_on_gas_and_industry_2010.pdf

Parsons Brinckerhoff and DNV GL, Industrial decarbonisation & energy efficiency roadmaps to 2050-Oil refining , prepared for the Department of Energy and Climate Change and the Department for Business, Innovation and Skills, 2015, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416671/Oil_Refining_Report.pdf

Andersson, 2016, Int. J. Greenhouse Gas Control, 45, 130, 10.1016/j.ijggc.2015.12.019

Escudero, 2016, Int. J. Greenhouse Gas Control, 45, 118, 10.1016/j.ijggc.2015.12.018

Adánez, 2009, Ind. Eng. Chem. Res., 48, 2509, 10.1021/ie8013346

Shah, 2016, Chem. Eng. Res. Des., 111, 403, 10.1016/j.cherd.2016.04.017

Song, 2014, Adv. Mater. Res., 864–867, 1725

F. Untalan , Australia signs contract with Japan to ship hydrogen , International Business Times, http://www.ibtimes.com.au/australia-signs-contract-japan-ship-hydrogen-1539612 , January 2017

A. Kohl and R.Nielsen , Gas Purification , Gulf Publishing Company , Houston, Texas , 5th edn, 1997

Cousins, 2012, Greenhouse Gases: Sci. Technol., 2, 329, 10.1002/ghg.1295

Kwak, 2012, Energy, 47, 41, 10.1016/j.energy.2012.07.016

Mangalapally, 2011, Chem. Eng. Res. Des., 89, 1216, 10.1016/j.cherd.2011.01.013

Stec, 2016, Clean Technol. Environ. Policy, 18, 151, 10.1007/s10098-015-1001-2

Mangalapally, 2011, Chem. Eng. Sci., 66, 5512, 10.1016/j.ces.2011.06.054

Rabensteiner, 2016, Int. J. Greenhouse Gas Control, 51, 106, 10.1016/j.ijggc.2016.04.035

Heldebrant, 2017, Chem. Rev., 117, 9594, 10.1021/acs.chemrev.6b00768

SaskPower, The world's first post-combustion coal-fired CCS facility , http://www.saskpowerccs.com , accessed October 2016

G. Puxty and M.Maeder , The fundamentals of post combustion capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 13–33

Xu, 1992, Ind. Eng. Chem. Res., 31, 921, 10.1021/ie00003a038

Freeman, 2010, Int. J. Greenhouse Gas Control, 4, 119, 10.1016/j.ijggc.2009.10.008

Rochelle, 2011, Chem. Eng. J., 171, 725, 10.1016/j.cej.2011.02.011

Dugas, 2011, J. Chem. Eng. Data, 56, 2187, 10.1021/je101234t

Dash, 2011, Fluid Phase Equilib., 300, 145, 10.1016/j.fluid.2010.11.004

Freeman, 2010, Int. J. Greenhouse Gas Control, 4, 756, 10.1016/j.ijggc.2010.03.009

Cousins, 2015, Greenhouse Gases: Sci. Technol., 5, 7, 10.1002/ghg.1462

Cousins, 2015, Int. J. Greenhouse Gas Control, 37, 256, 10.1016/j.ijggc.2015.03.007

Dai, 2012, Environ. Sci. Technol., 46, 9793, 10.1021/es301867b

Hikita, 1977, Chem. Eng. J., 14, 27, 10.1016/0300-9467(77)80019-1

Li, 2007, Ind. Eng. Chem. Res., 46, 4426, 10.1021/ie0614982

Weiland, 1971, Can. J. Chem. Eng., 49, 767, 10.1002/cjce.5450490610

Zhou, 2010, ChemSusChem, 3, 913, 10.1002/cssc.200900293

Nguyen, 2010, Int. J. Greenhouse Gas Control, 4, 707, 10.1016/j.ijggc.2010.06.003

Rabensteiner, 2014, Int. J. Greenhouse Gas Control, 27, 1, 10.1016/j.ijggc.2014.05.002

Lemaire, 2014, Oil Gas Sci. Technol., 69, 1069, 10.2516/ogst/2013153

Ballerat-Busserolles, 2014, Pure Appl. Chem., 86, 233, 10.1515/pac-2014-5017

Conway, 2014, Ind. Eng. Chem. Res., 53, 16715, 10.1021/ie503195x

Coulier, 2016, Int. J. Greenhouse Gas Control, 47, 322, 10.1016/j.ijggc.2016.02.009

Dubois, 2012, Chem. Eng. Technol., 35, 513, 10.1002/ceat.201100523

Liu, 2016, Int. J. Greenhouse Gas Control, 50, 206, 10.1016/j.ijggc.2016.04.020

Sherman, 2016, Chem. Eng. Sci., 153, 295, 10.1016/j.ces.2016.07.019

Vaidya, 2014, Can. J. Chem. Eng., 92, 2218, 10.1002/cjce.22061

Sartori, 1983, Ind. Eng. Chem. Fundam., 22, 239, 10.1021/i100010a016

Seo, 2000, Ind. Eng. Chem. Res., 39, 2062, 10.1021/ie990846f

Yang, 2010, J. Chem. Thermodyn., 42, 659, 10.1016/j.jct.2009.12.006

Khan, 2016, Int. J. Greenhouse Gas Control, 44, 217, 10.1016/j.ijggc.2015.11.020

Bruder, 2011, Chem. Eng. Sci., 66, 6193, 10.1016/j.ces.2011.08.051

Bougie, 2014, Int. J. Greenhouse Gas Control, 29, 16, 10.1016/j.ijggc.2014.07.008

Wang, 2014, Int. J. Greenhouse Gas Control, 24, 98, 10.1016/j.ijggc.2014.03.003

Li, 1993, Fluid Phase Equilib., 85, 129, 10.1016/0378-3812(93)80008-B

Shen, 1992, J. Chem. Eng. Data, 37, 96, 10.1021/je00005a025

Edali, 2009, Int. J. Greenhouse Gas Control, 3, 550, 10.1016/j.ijggc.2009.04.006

Naami, 2013, Int. J. Greenhouse Gas Control, 19, 3, 10.1016/j.ijggc.2013.08.008

Ramachandran, 2006, Ind. Eng. Chem. Res., 45, 2608, 10.1021/ie0505716

Sema, 2012, Chem. Eng. J., 209, 501, 10.1016/j.cej.2012.08.016

Lawal, 2005, Ind. Eng. Chem. Res., 44, 1874, 10.1021/ie049261y

Idem, 2006, Ind. Eng. Chem. Res., 45, 2414, 10.1021/ie050569e

Nwaoha, 2016, J. Nat. Gas Sci. Eng., 33, 742, 10.1016/j.jngse.2016.06.002

L. V. van der Ham , E. L. V.Goetheer , E. S.Fernandez , M. R. M.Abu-Zahra and T. J. H.Vlugt , Precipitating amino acid solutions , Absorption-Based Post-combustion Capture of Carbon Dioxide, Woodhead Publishing , Cambridge , 2016 , pp. 103–119

S. Wang and Z.Xu , Dual-liquid phase systems , Absorption-Based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 201–223

Sakwattanapong, 2005, Ind. Eng. Chem. Res., 44, 4465, 10.1021/ie050063w

Darde, 2009, Energy Procedia, 1, 1035, 10.1016/j.egypro.2009.01.137

Dave, 2009, Energy Procedia, 1, 949, 10.1016/j.egypro.2009.01.126

Yang, 2014, Ind. Eng. Chem. Fundam., 69, 931

Anderson, 2013, Energy Procedia, 37, 225, 10.1016/j.egypro.2013.05.106

Anderson, 2014, Energy Procedia, 63, 1773, 10.1016/j.egypro.2014.11.184

Smith, 2014, Energy Fuels, 28, 299, 10.1021/ef4014746

Sanchez-Fernandez, 2014, Energy Procedia, 63, 727, 10.1016/j.egypro.2014.11.080

Sanchez-Fernandez, 2014, Ind. Eng. Chem. Res., 53, 2348, 10.1021/ie402323r

Raynal, 2011, Energy Procedia, 4, 779, 10.1016/j.egypro.2011.01.119

Liebenthal, 2013, Energy Procedia, 37, 1844, 10.1016/j.egypro.2013.06.064

Ahn, 2011, Int. J. Greenhouse Gas Control, 5, 1606, 10.1016/j.ijggc.2011.09.007

Darde, 2010, Int. J. Greenhouse Gas Control, 4, 131, 10.1016/j.ijggc.2009.10.005

Mathias, 2010, Int. J. Greenhouse Gas Control, 4, 174, 10.1016/j.ijggc.2009.09.016

Mumford, 2015, Front. Chem. Sci. Eng., 9, 125, 10.1007/s11705-015-1514-6

K. H. Smith , N. J.Nicholas and G. W.Stevens , Inorganic salt solutions for post-combustion capture , Absorption-based Post-combustion Capture of Carbon Dioxide , Woodhead Publishing , Cambridge , 2016 , pp. 145–166

Mumford, 2012, Energy Fuels, 26, 138, 10.1021/ef201192n

UNO, UNO Technology Pty Ltd , http://unotech.com.au/ , 2014

Aronu, 2010, Int. J. Greenhouse Gas Control, 4, 771, 10.1016/j.ijggc.2010.04.003

Rabensteiner, 2014, Int. J. Greenhouse Gas Control, 29, 1, 10.1016/j.ijggc.2014.07.011

Rabensteiner, 2015, Int. J. Greenhouse Gas Control, 42, 562, 10.1016/j.ijggc.2015.09.012

Fernandez, 2013, Ind. Eng. Chem. Res., 52, 12223, 10.1021/ie401228r

Stephenson, 1993, J. Chem. Eng. Data, 38, 634, 10.1021/je00012a041

Ye, 2015, Int. J. Greenhouse Gas Control, 39, 205, 10.1016/j.ijggc.2015.05.025

Ciftja, 2013, Chem. Eng. Sci., 102, 378, 10.1016/j.ces.2013.08.036

Chowdhury, 2013, Energy Procedia, 37, 265, 10.1016/j.egypro.2013.05.111

Shi, 2012, Ind. Eng. Chem. Res., 51, 8608, 10.1021/ie300358c

Singto, 2016, Sep. Purif. Technol., 167, 97, 10.1016/j.seppur.2016.05.002

Yang, 2016, Energy Fuels, 30, 7503, 10.1021/acs.energyfuels.6b00875

Kikkinides, 1993, Ind. Eng. Chem. Res., 32, 2714, 10.1021/ie00023a038

Chue, 1995, Ind. Eng. Chem. Res., 34, 591, 10.1021/ie00041a020

Ishibashi, 1996, Energy Convers. Manage., 37, 929, 10.1016/0196-8904(95)00279-0

Ahmed, 2017, Chem. Eng. J., 310, 197, 10.1016/j.cej.2016.10.115

Webley, 2014, Adsorption, 20, 225, 10.1007/s10450-014-9603-2

Duan, 2017, Coord. Chem. Rev., 332, 48, 10.1016/j.ccr.2016.11.004

Grande, 2008, Int. J. Greenhouse Gas Control, 2, 194

Sanz-Pérez, 2016, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173

Kumar, 2015, Angew. Chem., Int. Ed., 54, 14372, 10.1002/anie.201506952

Shekhah, 2014, Nat. Commun., 5, 4228, 10.1038/ncomms5228

Figueroa, 2008, Int. J. Greenhouse Gas Control, 2, 9, 10.1016/S1750-5836(07)00094-1

Olivares-Marín, 2012, Greenhouse Gases: Sci. Technol., 2, 20, 10.1002/ghg.45

CO2CRC, The CO2CRC H3 Capture Project , http://old.co2crc.com.au/research/demo_postcombustion.html , CO2CRC Limited, The University of Melbourne, Australia, accessed January 2017

Tonomura, 2013, Energy Procedia, 37, 7160, 10.1016/j.egypro.2013.06.653

Saima, 2013, Energy Procedia, 37, 7152, 10.1016/j.egypro.2013.06.652

Kenarsari, 2013, RSC Adv., 3, 22739, 10.1039/c3ra43965h

Zhang, 2014, Energy Environ. Sci., 7, 2868, 10.1039/C4EE00143E

Bae, 2011, Angew. Chem., Int. Ed., 50, 11586, 10.1002/anie.201101891

Zhang, 2012, Energy Environ. Sci., 5, 6668, 10.1039/c2ee21152a

Li, 2011, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012

Sumida, 2011, Chem. Rev., 112, 724, 10.1021/cr2003272

Wang, 2011, Energy Environ. Sci., 4, 42, 10.1039/C0EE00064G

Samanta, 2012, Ind. Eng. Chem. Res., 51, 1438, 10.1021/ie200686q

Liu, 2012, Chem. Soc. Rev., 41, 2308, 10.1039/C1CS15221A

Huck, 2014, Energy Environ. Sci., 7, 4132, 10.1039/C4EE02636E

Hefti, 2016, Faraday Discuss., 192, 153, 10.1039/C6FD00040A

Haghpanah, 2013, Ind. Eng. Chem. Res., 52, 4249, 10.1021/ie302658y

Haghpanah, 2013, AIChE J., 59, 4735, 10.1002/aic.14192

Maring, 2013, Int. J. Greenhouse Gas Control, 15, 16, 10.1016/j.ijggc.2013.01.009

Nikolaidis, 2016, Ind. Eng. Chem. Res., 55, 635, 10.1021/acs.iecr.5b02845

First, 2014, AIChE J., 60, 1767, 10.1002/aic.14441

Chung, 2016, Sci. Adv., 2, e1600909, 10.1126/sciadv.1600909

Kim, 2013, Int. J. Greenhouse Gas Control, 17, 13, 10.1016/j.ijggc.2013.04.005

Lively, 2010, Ind. Eng. Chem. Res., 49, 7550, 10.1021/ie100806g

Bollini, 2012, Ind. Eng. Chem. Res., 51, 15145, 10.1021/ie301790a

Shen, 2012, Ind. Eng. Chem. Res., 51, 5011, 10.1021/ie202097y

Shen, 2011, Adsorption, 17, 179, 10.1007/s10450-010-9298-y

Xu, 2013, Chem. Eng. J., 230, 64, 10.1016/j.cej.2013.06.080

Ko, 2016, Ind. Eng. Chem. Res., 55, 8967, 10.1021/acs.iecr.6b01288

Campo, 2016, Fuel Process. Technol., 143, 185, 10.1016/j.fuproc.2015.11.024

Krishnamurthy, 2014, AIChE J., 60, 1830, 10.1002/aic.14435

Ling, 2015, Chem. Eng. J., 265, 47, 10.1016/j.cej.2014.11.121

Ebner, 2009, Sep. Sci. Technol., 44, 1273, 10.1080/01496390902733314

Wilcox, 2014, Annu. Rev. Chem. Biomol. Eng., 5, 479, 10.1146/annurev-chembioeng-060713-040100

Khurana, 2017, AIChE J., 1

Nikolaidis, 2017, Ind. Eng. Chem. Res., 56, 974, 10.1021/acs.iecr.6b04270

Leperi, 2016, Ind. Eng. Chem. Res., 55, 3338, 10.1021/acs.iecr.5b03122

Li, 2011, Chem. Eng. Sci., 66, 1825, 10.1016/j.ces.2011.01.023

Schell, 2009, Energy Procedia, 1, 655, 10.1016/j.egypro.2009.01.086

Garcia, 2013, Int. J. Greenhouse Gas Control, 12, 35, 10.1016/j.ijggc.2012.10.018

Liu, 2011, Sep. Purif. Technol., 81, 307, 10.1016/j.seppur.2011.07.037

Mulgundmath, 2010, Adsorption, 16, 587, 10.1007/s10450-010-9255-9

Marx, 2016, Ind. Eng. Chem. Res., 55, 1401, 10.1021/acs.iecr.5b03727

Joss, 2017, Chem. Eng. Sci., 158, 381, 10.1016/j.ces.2016.10.013

Ntiamoah, 2016, Ind. Eng. Chem. Res., 55, 703, 10.1021/acs.iecr.5b01384

Shin, 2012, Korean Chem. Eng. Res., 50, 646, 10.9713/kcer.2012.50.4.646

Kim, 2015, Korean J. Chem. Eng., 32, 677, 10.1007/s11814-014-0297-7

T. O. Nelson , D. A.Green , P.Box , R. P.Gupta , G.Henningsen , B. S.Turk and R. T. I. International , Carbon dioxide capture from flue gas using dry regenerable sorbents, RTI International , Research Triangle Institute , USA , 2009

Chaiwang, 2014, Chem. Eng. Sci., 105, 32, 10.1016/j.ces.2013.09.024

Darunte, 2016, Curr. Opin. Chem. Eng., 12, 82, 10.1016/j.coche.2016.03.002

Zhang, 2014, Chem. Eng. J., 251, 293, 10.1016/j.cej.2014.04.063

Schöny, 2017, Powder Technol., 316, 519, 10.1016/j.powtec.2016.11.066

Pirngruber, 2013, Int. J. Greenhouse Gas Control, 14, 74, 10.1016/j.ijggc.2013.01.010

Sjostrom, 2011, Energy Procedia, 4, 1584, 10.1016/j.egypro.2011.02.028

Zaabout, 2017, Int. J. Greenhouse Gas Control, 60, 74, 10.1016/j.ijggc.2017.03.001

Son, 2016, Int. J. Greenhouse Gas Control, 49, 34, 10.1016/j.ijggc.2016.02.020

Hammache, 2013, Energy Fuels, 27, 6899, 10.1021/ef401562w

Fujiki, 2017, Chem. Eng. J., 307, 273, 10.1016/j.cej.2016.08.071

Inventys, VeloxoTherm™ process , Burnaby, BC Canada, 2016, http://inventysinc.com/

Tlili, 2012, Ind. Eng. Chem. Res., 51, 15729, 10.1021/ie3016818

Ribeiro, 2013, Chem. Eng. Sci., 104, 304, 10.1016/j.ces.2013.09.011

Grande, 2009, Energy Fuels, 23, 2797, 10.1021/ef8010756

Wang, 2011, Environ. Sci. Technol., 45, 6670, 10.1021/es201180v

Fernandez, 2012, Chem. Eng. Sci., 84, 1, 10.1016/j.ces.2012.07.039

Wu, 2013, Chem. Eng. Technol., 36, 567, 10.1002/ceat.201200694

Gazzani, 2013, Fuel, 105, 206, 10.1016/j.fuel.2012.07.048

Manzolini, 2013, Fuel, 105, 220, 10.1016/j.fuel.2012.07.043

Jansen, 2013, Energy Procedia, 37, 2265, 10.1016/j.egypro.2013.06.107

Li Yuen Fong, 2016, J. Cleaner Prod., 111, 193, 10.1016/j.jclepro.2015.08.033

Grajciar, 2012, ChemSusChem, 5, 2011, 10.1002/cssc.201200270

Kim, 2012, J. Am. Chem. Soc., 134, 18940, 10.1021/ja309818u

Lozinska, 2014, Chem. Mater., 26, 2052, 10.1021/cm404028f

Bae, 2013, Energy Environ. Sci., 6, 128, 10.1039/C2EE23337A

Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336

Nugent, 2013, Nature, 495, 80, 10.1038/nature11893

Couck, 2009, J. Am. Chem. Soc., 131, 6326, 10.1021/ja900555r

Burtch, 2014, Chem. Rev., 114, 10575, 10.1021/cr5002589

Wang, 2016, Chem. Soc. Rev., 45, 5107, 10.1039/C6CS00362A

Choi, 2009, ChemSusChem, 2, 796, 10.1002/cssc.200900036

Mason, 2011, Macromolecules, 44, 6471, 10.1021/ma200918h

Mason, 2014, Macromolecules, 47, 1021, 10.1021/ma401869p

Sevilla, 2011, Adv. Funct. Mater., 21, 2781, 10.1002/adfm.201100291

Xu, 2002, Energy Fuels, 16, 1463, 10.1021/ef020058u

Demessence, 2009, J. Am. Chem. Soc., 131, 8784, 10.1021/ja903411w

McDonald, 2011, Chem. Sci., 2, 2022, 10.1039/c1sc00354b

McDonald, 2012, J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j

Lee, 2014, Energy Environ. Sci., 7, 744, 10.1039/C3EE42328J

McDonald, 2015, Nature, 519, 303, 10.1038/nature14327

Anbia, 2012, Chem. Eng. J., 191, 326, 10.1016/j.cej.2012.03.025

Zhao, 2013, Appl. Surf. Sci., 284, 138, 10.1016/j.apsusc.2013.07.068

Rezaei, 2009, Chem. Eng. Sci., 64, 5182, 10.1016/j.ces.2009.08.029

Rezaei, 2010, Ind. Eng. Chem. Res., 49, 4832, 10.1021/ie9016545

Vargas, 2011, Adsorption, 17, 497, 10.1007/s10450-010-9309-z

Lively, 2011, Chem. Eng. J., 171, 801, 10.1016/j.cej.2011.01.004

Lively, 2012, Int. J. Hydrogen Energy, 37, 15227, 10.1016/j.ijhydene.2012.07.110

Rezaei, 2014, Chem. Eng. Sci., 113, 62, 10.1016/j.ces.2014.04.002

Determan, 2016, Ind. Eng. Chem. Res., 55, 2119, 10.1021/acs.iecr.5b02117

Thakkar, 2016, ACS Appl. Mater. Interfaces, 8, 27753, 10.1021/acsami.6b09647

Mason, 2015, J. Am. Chem. Soc., 137, 4787, 10.1021/jacs.5b00838

Gibson, 2016, Ind. Eng. Chem. Res., 55, 3840, 10.1021/acs.iecr.5b05015

Ramos-Fernandez, 2011, Appl. Catal., A, 391, 261, 10.1016/j.apcata.2010.05.019

Schwab, 2008, Adv. Eng. Mater., 10, 1151, 10.1002/adem.200800189

Küsgens, 2010, J. Am. Ceram. Soc., 93, 2476, 10.1111/j.1551-2916.2010.03824.x

Calvez, 2016, RSC Adv., 6, 17314, 10.1039/C5RA25238E

Armstrong, 2015, Ind. Eng. Chem. Res., 54, 12386, 10.1021/acs.iecr.5b03334

Bradshaw, 2012, Chem. Soc. Rev., 41, 2344, 10.1039/C1CS15276A

Ostermann, 2011, Chem. Commun., 47, 442, 10.1039/C0CC02271C

Shimizu, 1999, Chem. Eng. Res. Des., 77, 62, 10.1205/026387699525882

Hanak, 2015, Int. J. Greenhouse Gas Control, 42, 226, 10.1016/j.ijggc.2015.08.003

Hanak, 2016, Energy, 102, 343, 10.1016/j.energy.2016.02.079

M. Iijima , Mitsbubishi Heavy Industries Flue Gas CO2 Recovery Technology. Presentation, Global Climate & Energy Project Energy Workshop on Carbon Capture and Separation , Stanford University, 2004, https://gcep.stanford.edu/pdfs/energy_workshops_04_04/carbon_iijima.pdf

D. A. Jones , T. F.McVey and S. J.Friedmann , Technoeconomic evaluation of MEA versus mixed amines for CO2 removal at near-commercial scale at Duke Energy Gibson 3 plant. Report prepared for the U.S. Department of Energy , Lawrence Livermore National Laboratory, 2012, https://e-reports-ext.llnl.gov/pdf/700272.pdf

Ozcan, 2013, Int. J. Greenhouse Gas Control, 19, 530, 10.1016/j.ijggc.2013.10.009

Atsonios, 2015, Fuel, 153, 210, 10.1016/j.fuel.2015.02.084

Perejón, 2016, Appl. Energy, 162, 787, 10.1016/j.apenergy.2015.10.121

J. Blamey and B.Anthony , Chapter 8: End use of lime-based sorbents from calcium looping systems , Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture , Woodhead Publishing Ltd. , UK , 2015 , pp. 153–169

Kremer, 2013, Chem. Eng. Technol., 36, 1518, 10.1002/ceat.201300084

Ströhle, 2014, Fuel, 127, 13, 10.1016/j.fuel.2013.12.043

Arias, 2013, Int. J. Greenhouse Gas Control, 18, 237, 10.1016/j.ijggc.2013.07.014

H.-W. Hsu , Calcium-looping CO2Capture Technology, Industrial Technology Research Institute (ITRI) , https://www.itri.org.tw/eng/Content/MsgPic01/Contents.aspx?SiteID=1&MmmID=620170236661141772&MSid=620170263150637304 , accessed December 2016

Abanades, 2015, Int. J. Greenhouse Gas Control, 40, 126, 10.1016/j.ijggc.2015.04.018

Hanak, 2015, Energy Environ. Sci., 8, 2199, 10.1039/C5EE01228G

Blamey, 2010, Prog. Energy Combust. Sci., 36, 260, 10.1016/j.pecs.2009.10.001

Manovic, 2010, Ind. Eng. Chem. Res., 49, 9105, 10.1021/ie101352s

Donat, 2012, Environ. Sci. Technol., 46, 1262, 10.1021/es202679w

Duelli, 2015, Int. J. Greenhouse Gas Control, 33, 103, 10.1016/j.ijggc.2014.12.006

Symonds, 2012, Ind. Eng. Chem. Res., 51, 7177, 10.1021/ie2030129

Manovic, 2010, Ind. Eng. Chem. Res., 49, 6916, 10.1021/ie901795e

Hu, 2016, Fuel, 181, 199, 10.1016/j.fuel.2016.04.138

He, 2016, Int. J. Hydrogen Energy, 41, 4296, 10.1016/j.ijhydene.2016.01.029

Champagne, 2016, Powder Technol., 290, 114, 10.1016/j.powtec.2015.07.039

Kavosh, 2014, Appl. Energy, 131, 499, 10.1016/j.apenergy.2014.05.020

Clough, 2016, Fuel, 186, 708, 10.1016/j.fuel.2016.08.098

Jia, 2007, Ind. Eng. Chem. Res., 46, 5199, 10.1021/ie061212t

Ridha, 2016, Powder Technol., 291, 60, 10.1016/j.powtec.2015.11.065

Erans, 2016, Appl. Energy, 180, 722, 10.1016/j.apenergy.2016.07.074

Erans, 2016, Faraday Discuss., 192, 97, 10.1039/C6FD00027D

Erans, 2017, Fuel, 187, 388, 10.1016/j.fuel.2016.09.061

Ridha, 2013, Int. J. Greenhouse Gas Control, 17, 357, 10.1016/j.ijggc.2013.05.009

Fennell, 2007, Energy Fuels, 21, 2072, 10.1021/ef060506o

Al-Jeboori, 2013, Ind. Eng. Chem. Res., 52, 1426, 10.1021/ie302198g

Ridha, 2015, Chem. Eng. J., 274, 69, 10.1016/j.cej.2015.03.041

Pinheiro, 2016, Ind. Eng. Chem. Res., 55, 7860, 10.1021/acs.iecr.5b04574

Fennell, 2007, J. Energy Inst., 80, 116, 10.1179/174602207X189175

Wu, 2010, Energy Fuels, 24, 2768, 10.1021/ef9012449

Yu, 2012, Ind. Eng. Chem. Res., 51, 2133, 10.1021/ie200802y

Blamey, 2015, Fuel, 150, 269, 10.1016/j.fuel.2015.02.026

Salvador, 2003, Chem. Eng. J., 96, 187, 10.1016/j.cej.2003.08.011

Sun, 2008, AIChE J., 54, 1668, 10.1002/aic.11491

Chen, 2009, Energy Fuels, 23, 1437, 10.1021/ef800779k

Arias, 2011, Chem. Eng. J., 167, 255, 10.1016/j.cej.2010.12.052

Diego, 2016, Int. J. Greenhouse Gas Control, 50, 14, 10.1016/j.ijggc.2016.04.008

Yin, 2016, Energy Fuels, 30, 1730, 10.1021/acs.energyfuels.5b02266

Wang, 2016, Int. J. Hydrogen Energy, 41, 12000, 10.1016/j.ijhydene.2016.05.056

Wu, 2017, J. Cleaner Prod., 140, 1049, 10.1016/j.jclepro.2016.10.079

Manovic, 2011, Ind. Eng. Chem. Res., 50, 12384, 10.1021/ie201427g

Qin, 2016, Fuel, 181, 522, 10.1016/j.fuel.2016.05.035

Rahman, 2015, Energy Fuels, 29, 3808, 10.1021/acs.energyfuels.5b00256

Duhoux, 2016, Energy Technol., 4, 1158, 10.1002/ente.201600024

Hanak, 2016, Energy Environ. Sci., 9, 971, 10.1039/C5EE02950C

Tregambi, 2015, Sol. Energy, 120, 208, 10.1016/j.solener.2015.07.017

Chacartegui, 2016, Appl. Energy, 173, 589, 10.1016/j.apenergy.2016.04.053

Zhai, 2016, Energy Convers. Manage., 117, 251, 10.1016/j.enconman.2016.03.022

Lara, 2016, Energy, 116, 956, 10.1016/j.energy.2016.10.020

E. J. Anthony , Private communication from Cranfield University , December, 2016

Adanez, 2012, Prog. Energy Combust. Sci., 38, 215, 10.1016/j.pecs.2011.09.001

Fan, 2012, Energy Environ. Sci., 5, 7254, 10.1039/c2ee03198a

Murugan, 2011, Energy Environ. Sci., 4, 4639, 10.1039/c1ee02142g

Jensen, 2009, J. Chem. Educ., 86, 1266, 10.1021/ed086p1266

Zhou, 2016, Energy Fuels, 30, 1741, 10.1021/acs.energyfuels.5b02209

Thursfield, 2012, Energy Environ. Sci., 5, 7421, 10.1039/c2ee03470k

Ishida, 1987, Energy, 12, 147, 10.1016/0360-5442(87)90119-8

Ströhle, 2015, Appl. Energy, 157, 288, 10.1016/j.apenergy.2015.06.035

Jin, 2002, Ind. Eng. Chem. Res., 41, 4004, 10.1021/ie020184l

Jin, 2004, Fuel, 83, 2411, 10.1016/j.fuel.2004.06.033

Mattisson, 2007, Int. J. Greenhouse Gas Control, 1, 158, 10.1016/S1750-5836(07)00023-0

Berguerand, 2009, Energy Fuels, 23, 5257, 10.1021/ef900464j

Leion, 2008, Int. J. Greenhouse Gas Control, 2, 180, 10.1016/S1750-5836(07)00117-X

Dennis, 2010, Fuel, 89, 2353, 10.1016/j.fuel.2010.01.037

Siriwardane, 2010, Combust. Flame, 157, 2198, 10.1016/j.combustflame.2010.06.008

Leion, 2007, Fuel, 86, 1947, 10.1016/j.fuel.2006.11.037

Saucedo, 2014, Proc. Combust. Inst., 35, 2785, 10.1016/j.proci.2014.07.005

Scott, 2006, AIChE J., 52, 3325, 10.1002/aic.10942

Linderholm, 2014, Energy Fuels, 28, 5942, 10.1021/ef501067b

Mattisson, 2009, Int. J. Greenhouse Gas Control, 3, 11, 10.1016/j.ijggc.2008.06.002

Arjmand, 2012, Energy Fuels, 26, 6528, 10.1021/ef3010064

Xu, 2013, Energy Fuels, 27, 1522, 10.1021/ef301969k

Azimi, 2013, Energy Fuels, 27, 367, 10.1021/ef301120r

Ekström, 2009, Energy Procedia, 1, 4233, 10.1016/j.egypro.2009.02.234

Lyngfelt, 2015, Appl. Energy, 157, 475, 10.1016/j.apenergy.2015.04.057

Porrazzo, 2016, Faraday Discuss., 192, 437, 10.1039/C6FD00033A

I. Abdulally , C.Beal , H.Andrus , B.Epple , A.Lyngfelt and B.Lani , Alstom's Chemical Looping Prototypes, Program Update, 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA

Hallberg, 2016, Int. J. Greenhouse Gas Control, 53, 222, 10.1016/j.ijggc.2016.08.006

Bayham, 2013, Energy Fuels, 27, 1347, 10.1021/ef400010s

Jeong, 2014, Renewable Energy, 65, 102, 10.1016/j.renene.2013.07.035

McLeary, 2006, Microporous Mesoporous Mater., 90, 198, 10.1016/j.micromeso.2005.10.050

Sridhar, 2007, Sep. Purif. Rev., 36, 113, 10.1080/15422110601165967

Aroon, 2010, Sep. Purif. Technol., 75, 229, 10.1016/j.seppur.2010.08.023

Brunetti, 2010, J. Membr. Sci., 359, 115, 10.1016/j.memsci.2009.11.040

Scholes, 2010, Int. J. Greenhouse Gas Control, 4, 739, 10.1016/j.ijggc.2010.04.001

Favre, 2011, Chem. Eng. J., 171, 782, 10.1016/j.cej.2011.01.010

Du, 2012, Energy Environ. Sci., 5, 7306, 10.1039/C1EE02668B

Scholes, 2012, Fuel, 96, 15, 10.1016/j.fuel.2011.12.074

Belaissaoui, 2014, Oil Gas Sci. Technol., 69, 1005, 10.2516/ogst/2013163

Brunetti, 2014, J. Membr. Sci., 454, 305, 10.1016/j.memsci.2013.12.037

Al-Mufachi, 2015, Renewable Sustainable Energy Rev., 47, 540, 10.1016/j.rser.2015.03.026

Gallucci, 2013, Chem. Eng. Sci., 92, 40, 10.1016/j.ces.2013.01.008

Chi, 2016, Chem. Mater., 28, 2921, 10.1021/acs.chemmater.5b04475

Ilinitch, 1995, J. Membr. Sci., 98, 287, 10.1016/0376-7388(94)00262-W

Jiao, 2015, ACS Appl. Mater. Interfaces, 7, 9052, 10.1021/am509048k

Kharton, 1999, J. Membr. Sci., 163, 307, 10.1016/S0376-7388(99)00172-6

Sunarso, 2017, Prog. Energy Combust. Sci., 61, 57, 10.1016/j.pecs.2017.03.003

Yepes, 2006, J. Membr. Sci., 274, 92, 10.1016/j.memsci.2005.08.003

Thursfield, 2004, J. Mater. Chem., 14, 2475, 10.1039/b405676k

Sunarso, 2008, J. Membr. Sci., 320, 13, 10.1016/j.memsci.2008.03.074

Zhang, 2011, RSC Adv., 1, 1661, 10.1039/c1ra00419k

Geffroy, 2013, Chem. Eng. Sci., 87, 408, 10.1016/j.ces.2012.10.027

Shao, 2000, J. Membr. Sci., 172, 177, 10.1016/S0376-7388(00)00337-9

Phair, 2006, Ionics, 12, 103, 10.1007/s11581-006-0016-4

Li, 2009, Catal. Today, 148, 303, 10.1016/j.cattod.2009.08.009

Rui, 2009, J. Membr. Sci., 345, 110, 10.1016/j.memsci.2009.08.034

Chung, 2005, Ind. Eng. Chem. Res., 44, 7999, 10.1021/ie0503141

Papaioannou, 2015, J. Membr. Sci., 485, 87, 10.1016/j.memsci.2015.03.013

Tong, 2016, J. Mater. Chem. A, 4, 1828, 10.1039/C5TA10105K

Zhang, 2012, Energy Environ. Sci., 5, 8310, 10.1039/c2ee22045h

Barbieri, 2008, J. Power Sources, 182, 160, 10.1016/j.jpowsour.2008.03.086

Brunetti, 2007, J. Membr. Sci., 306, 329, 10.1016/j.memsci.2007.09.009

Cabral, 2017, Appl. Energy, 205, 529, 10.1016/j.apenergy.2017.08.003

Uemiya, 1991, Ind. Eng. Chem. Res., 30, 585, 10.1021/ie00051a022

Bi, 2009, Int. J. Hydrogen Energy, 34, 2965, 10.1016/j.ijhydene.2009.01.046

Mendes, 2010, Int. J. Hydrogen Energy, 35, 12596, 10.1016/j.ijhydene.2010.07.159

Catalano, 2010, J. Membr. Sci., 362, 221, 10.1016/j.memsci.2010.06.055

Mendes, 2011, Chem. Eng. Sci., 66, 2356, 10.1016/j.ces.2011.02.035

Catalano, 2013, Ind. Eng. Chem. Res., 52, 1042, 10.1021/ie2025008

Shirasaki, 2009, Int. J. Hydrogen Energy, 34, 4482, 10.1016/j.ijhydene.2008.08.056

Huang, 2005, J. Membr. Sci., 261, 67, 10.1016/j.memsci.2005.03.033

Lima da Silva, 2011, J. Power Sources, 196, 8568, 10.1016/j.jpowsour.2011.06.035

Jiang, 2008, Angew. Chem., Int. Ed., 47, 9341, 10.1002/anie.200803899

Li, 2016, Angew. Chem., Int. Ed., 128, 8708, 10.1002/ange.201602207

Bredesen, 2004, Chem. Eng. Process., 43, 1129, 10.1016/j.cep.2003.11.011

Hashim, 2011, Renewable Sustainable Energy Rev., 15, 1284, 10.1016/j.rser.2010.10.002

Habib, 2011, Int. J. Energy Res., 35, 741, 10.1002/er.1798

Mancini, 2011, Phys. Chem. Chem. Phys., 13, 21351, 10.1039/c1cp23027a

Mancini, 2011, Energy, 36, 4701, 10.1016/j.energy.2011.05.023

Gunasekaran, 2014, Energy, 70, 338, 10.1016/j.energy.2014.04.008

Dong, 2012, Curr. Opin. Chem. Eng., 1, 163, 10.1016/j.coche.2012.03.003

Wei, 2013, Chem. Eng. J., 220, 185, 10.1016/j.cej.2013.01.048

Zheng, 2013, Chem. Eng. Sci., 101, 240, 10.1016/j.ces.2013.06.039

Tang, 2012, AIChE J., 58, 2473, 10.1002/aic.12742

Wei, 2013, J. Membr. Sci., 429, 147, 10.1016/j.memsci.2012.11.075

Wei, 2013, AIChE J., 59, 3856, 10.1002/aic.14131

Xue, 2013, J. Membr. Sci., 443, 124, 10.1016/j.memsci.2013.04.067

Zhu, 2013, Solid State Ionics, 253, 57, 10.1016/j.ssi.2013.08.040

Liang, 2014, Chem. Commun., 50, 2451, 10.1039/C3CC47962E

Tan, 2008, Catal. Today, 131, 292, 10.1016/j.cattod.2007.10.081

Hong, 2013, J. Membr. Sci., 445, 96, 10.1016/j.memsci.2013.05.055

Hong, 2015, J. Membr. Sci., 488, 1, 10.1016/j.memsci.2015.04.006

Hallett, 2011, Chem. Rev., 111, 3508, 10.1021/cr1003248

Olivier-Bourbigou, 2002, J. Mol. Catal. A: Chem., 182, 419, 10.1016/S1381-1169(01)00465-4

Zhao, 2002, Aldrichimica Acta, 35, 75, 10.1016/S0003-2670(01)01543-4

Chiappe, 2005, J. Phys. Org. Chem., 18, 275, 10.1002/poc.863

P. Wasserscheid and T.Welton , Ionic Liquids in Synthesis , John Wiley & Sons , Germany , 2nd edn, 2008

Wasserscheid, 2000, Angew. Chem., Int. Ed., 39, 3772, 10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

Gordon, 2001, Appl. Catal., A, 222, 101, 10.1016/S0926-860X(01)00834-1

Sheldon, 2001, Chem. Commun., 2399, 10.1039/b107270f

Welton, 2004, Coord. Chem. Rev., 248, 2459, 10.1016/j.ccr.2004.04.015

Zhang, 2011, Green Chem., 13, 2619, 10.1039/c1gc15334j

Huddleston, 1998, Chem. Commun., 1765, 10.1039/A803999B

Han, 2007, Acc. Chem. Res., 40, 1079, 10.1021/ar700044y

Berthod, 2008, J. Chromatogr. A, 1184, 6, 10.1016/j.chroma.2007.11.109

O. Kuzmina and J.Hallett , Application, Purification, and Recovery of Ionic Liquids , Elsevier , London, UK , 2016

Zhou, 2005, Curr. Nanosci., 1, 35, 10.2174/1573413052953174

El Abedin, 2007, Green Chem., 9, 549, 10.1039/B614520E

Smiglak, 2007, Acc. Chem. Res., 40, 1182, 10.1021/ar7001304

Li, 2008, Curr. Opin. Solid State Mater. Sci., 12, 1, 10.1016/j.cossms.2009.01.002

Ma, 2010, Adv. Mater., 22, 261, 10.1002/adma.200900603

Sato, 2004, Electrochim. Acta, 49, 3603, 10.1016/j.electacta.2004.03.030

Wishart, 2009, Energy Environ. Sci., 2, 956, 10.1039/b906273d

Zhao, 2011, Adv. Mater., 23, 1385, 10.1002/adma.201003294

MacFarlane, 2014, Energy Environ. Sci., 7, 232, 10.1039/C3EE42099J

Zhang, 2014, Chem. Soc. Rev., 43, 7838, 10.1039/C3CS60409H

Mora-Pale, 2011, Biotechnol. Bioeng., 108, 1229, 10.1002/bit.23108

Tadesse, 2011, Energy Environ. Sci., 4, 3913, 10.1039/c0ee00667j

Brandt, 2013, Green Chem., 15, 550, 10.1039/c2gc36364j

da Costa Lopes, 2013, Sustainable Chem. Processes, 1, 3, 10.1186/2043-7129-1-3

Earle, 2006, Nature, 439, 831, 10.1038/nature04451

Ngo, 2000, Thermochim. Acta, 357, 97, 10.1016/S0040-6031(00)00373-7

Kosmulski, 2004, Thermochim. Acta, 412, 47, 10.1016/j.tca.2003.08.022

Smiglak, 2006, Chem. Commun., 2554, 10.1039/b602086k

Niedermeyer, 2012, Chem. Soc. Rev., 41, 7780, 10.1039/c2cs35177c

Bara, 2009, Ind. Eng. Chem. Res., 48, 2739, 10.1021/ie8016237

J. S. Kanel , Overview: Industrial application of ionic liquids for liquid extraction, Chemical Industry Vision 2020 Technology Partnership Workshop, New York, New York, 2003

Blanchard, 1999, Nature, 399, 28, 10.1038/19887

Carvalho, 2016, Phys. Chem. Chem. Phys., 18, 14757, 10.1039/C6CP01896C

Blanchard, 2001, J. Phys. Chem. B, 105, 2437, 10.1021/jp003309d

Baltus, 2004, J. Phys. Chem. B, 108, 721, 10.1021/jp036051a

Anthony, 2005, J. Phys. Chem. B, 109, 6366, 10.1021/jp046404l

Muldoon, 2007, J. Phys. Chem. B, 111, 9001, 10.1021/jp071897q

Ramdin, 2012, Ind. Eng. Chem. Res., 51, 8149, 10.1021/ie3003705

Brennecke, 2010, J. Phys. Chem. Lett., 1, 3459, 10.1021/jz1014828

Hasib-ur Rahman, 2010, Chem. Eng. Process., 49, 313, 10.1016/j.cep.2010.03.008

Karadas, 2010, Energy Fuels, 24, 5817, 10.1021/ef1011337

Zhang, 2009, Chem. – Eur. J., 15, 3003, 10.1002/chem.200801184

Wang, 2010, Angew. Chem., Int. Ed., 49, 5978, 10.1002/anie.201002641

Gurau, 2011, Angew. Chem., Int. Ed., 50, 12024, 10.1002/anie.201105198

Wang, 2011, Angew. Chem., Int. Ed., 50, 4918, 10.1002/anie.201008151

Wang, 2013, RSC Adv., 3, 15518, 10.1039/c3ra42366b

Seo, 2014, J. Phys. Chem. B, 118, 5740, 10.1021/jp502279w

Cui, 2016, Chem. Soc. Rev., 45, 4307, 10.1039/C5CS00462D

Bates, 2002, J. Am. Chem. Soc., 124, 926, 10.1021/ja017593d

Davis, 2004, Chem. Lett., 33, 1072, 10.1246/cl.2004.1072

Huang, 2009, Aust. J. Chem., 62, 298, 10.1071/CH08559

Wappel, 2010, Int. J. Greenhouse Gas Control, 4, 486, 10.1016/j.ijggc.2009.11.012

Petkovic, 2011, Chem. Soc. Rev., 40, 1383, 10.1039/C004968A

Yang, 2011, RSC Adv., 1, 545, 10.1039/c1ra00307k

Shannon, 2012, Sep. Sci. Technol., 47, 178, 10.1080/01496395.2011.630055

Giernoth, 2010, Angew. Chem., Int. Ed., 49, 2834, 10.1002/anie.200905981

Gurkan, 2010, J. Phys. Chem. Lett., 1, 3494, 10.1021/jz101533k

Zhang, 2008, AIChE J., 54, 2717, 10.1002/aic.11573

Shiflett, 2005, Ind. Eng. Chem. Res., 44, 4453, 10.1021/ie058003d

Moya, 2014, Ind. Eng. Chem. Res., 53, 13782, 10.1021/ie501925d

de Riva, 2017, Int. J. Greenhouse Gas Control, 61, 61, 10.1016/j.ijggc.2017.03.019

Carvalho, 2009, J. Phys. Chem. B, 113, 6803, 10.1021/jp901275b

Shiflett, 2010, Energy Fuels, 24, 5781, 10.1021/ef100868a

Yu, 2007, AIChE J., 53, 3210, 10.1002/aic.11339

Gutowski, 2008, J. Am. Chem. Soc., 130, 14690, 10.1021/ja804654b

Sharma, 2012, Chem. Eng. J., 193, 267, 10.1016/j.cej.2012.04.015

Sistla, 2014, J. Ind. Eng. Chem., 20, 2497, 10.1016/j.jiec.2013.10.032

Soutullo, 2007, Chem. Mater., 19, 3581, 10.1021/cm0705690

Wang, 2012, Chem. Commun., 48, 6526, 10.1039/c2cc32365f

Yang, 2014, Beilstein J. Org. Chem., 10, 1959, 10.3762/bjoc.10.204

Vijayraghavan, 2013, Phys. Chem. Chem. Phys., 15, 19994, 10.1039/c3cp54082k

Chen, 2014, Green Chem., 16, 3098, 10.1039/C4GC00016A

Egorova, 2015, Toxicol. Res., 4, 152, 10.1039/C4TX00079J

Ohno, 2007, Acc. Chem. Res., 40, 1122, 10.1021/ar700053z

Zhang, 2006, Chem. – Eur. J., 12, 4021, 10.1002/chem.200501015

Jiang, 2008, Chem. Commun., 505, 10.1039/B713648J

Yu, 2009, New J. Chem., 33, 2385, 10.1039/b9nj00330d

Clough, 2013, Phys. Chem. Chem. Phys., 15, 20480, 10.1039/c3cp53648c

Gurkan, 2010, J. Am. Chem. Soc., 132, 2116, 10.1021/ja909305t

Goodrich, 2010, Ind. Eng. Chem. Res., 50, 111, 10.1021/ie101688a

Goodrich, 2011, J. Phys. Chem. B, 115, 9140, 10.1021/jp2015534

Saravanamurugan, 2014, ChemSusChem, 7, 897, 10.1002/cssc.201300691

Luo, 2014, J. Phys. Chem. Lett., 5, 381, 10.1021/jz402531n

Anderson, 2015, Green Chem., 17, 4340, 10.1039/C5GC00720H

Kasahara, 2014, Ind. Eng. Chem. Res., 53, 2422, 10.1021/ie403116t

Romanos, 2014, J. Phys. Chem. C, 118, 24437, 10.1021/jp5062946

Wu, 2011, Ind. Eng. Chem. Res., 50, 8983, 10.1021/ie200518f

Gurkan, 2013, Phys. Chem. Chem. Phys., 15, 7796, 10.1039/c3cp51289d

Li, 2014, J. Phys. Chem. B, 118, 14880, 10.1021/jp5100236

Breugst, 2010, J. Org. Chem., 75, 5250, 10.1021/jo1009883

Wu, 2012, Phys. Chem. Chem. Phys., 14, 13163, 10.1039/c2cp41769c

Ren, 2013, Ind. Eng. Chem. Res., 52, 8565, 10.1021/ie4006386

Tang, 2013, ChemSusChem, 6, 1050, 10.1002/cssc.201200986

Lei, 2014, RSC Adv., 4, 7052, 10.1039/c3ra47524g

Seo, 2014, Energy Fuels, 28, 5968, 10.1021/ef501374x

Kamio, 2017, Sep. Sci. Technol., 52, 197, 10.1080/01496395.2016.1245330

Brown, 2015, AIChE J., 61, 2280, 10.1002/aic.14819

Seo, 2015, J. Phys. Chem. B, 119, 11807, 10.1021/acs.jpcb.5b05733

Zhang, 2014, ChemSusChem, 7, 1484, 10.1002/cssc.201400133

Firaha, 2015, Angew. Chem., Int. Ed., 54, 7805, 10.1002/anie.201502296

Cabaço, 2012, J. Phys. Chem. A, 116, 1605, 10.1021/jp211211n

Mathews, 2000, Chem. Commun., 1249, 10.1039/b002755n

Maginn, 2009, J. Phys.: Condens. Matter, 21, 373101

Rodríguez, 2011, Chem. Commun., 47, 3222, 10.1039/c0cc05223j

Swatloski, 2002, J. Am. Chem. Soc., 124, 4974, 10.1021/ja025790m

Shiflett, 2008, J. Chem. Thermodyn., 40, 25, 10.1016/j.jct.2007.06.003

Shiflett, 2012, ChemPhysChem, 13, 1806, 10.1002/cphc.201200023

Shi, 2014, J. Phys. Chem. B, 118, 7383, 10.1021/jp502425a

Chen, 2011, Energy Fuels, 25, 5810, 10.1021/ef201519g

Wang, 2010, Green Chem., 12, 2019, 10.1039/c0gc00070a

Zhang, 2013, Ind. Eng. Chem. Res., 52, 6069, 10.1021/ie302928v

Seo, 2014, J. Phys. Chem. B, 118, 14870, 10.1021/jp509583c

Gohndrone, 2014, ChemSusChem, 7, 1970, 10.1002/cssc.201400009

Lee, 2015, J. Phys. Chem. B, 120, 1509, 10.1021/acs.jpcb.5b06934

Jessop, 2005, Nature, 436, 1102, 10.1038/4361102a

Heldebrant, 2005, J. Org. Chem., 70, 5335, 10.1021/jo0503759

Heldebrant, 2008, Energy Environ. Sci., 1, 487, 10.1039/b808865a

Phan, 2008, Ind. Eng. Chem. Res., 47, 539, 10.1021/ie070552r

Wang, 2010, Green Chem., 12, 870, 10.1039/b927514b

Hong, 2013, ChemSusChem, 6, 890, 10.1002/cssc.201200971

Benitez-Garcia, 1991, Chem. Eng. Sci., 46, 2927, 10.1016/0009-2509(91)85161-P

Vaidya, 2007, Chem. Eng. Technol., 30, 1467, 10.1002/ceat.200700268

Safdar, 2014, Appl. Mech. Mater., 625, 549, 10.4028/www.scientific.net/AMM.625.549

Zhao, 2014, Angew. Chem., 126, 6032, 10.1002/ange.201400521

Wang, 2012, Chem. – Eur. J., 18, 2153, 10.1002/chem.201103092

Zhang, 2013, Ind. Eng. Chem. Res., 52, 5835, 10.1021/ie4001629

Hu, 2015, Energy Fuels, 29, 6019, 10.1021/acs.energyfuels.5b01062

Ding, 2014, Chem. Commun., 50, 15041, 10.1039/C4CC06944G

Luo, 2014, Angew. Chem., Int. Ed., 53, 7053, 10.1002/anie.201400957

Feng, 2010, Chem. Eng. J., 160, 691, 10.1016/j.cej.2010.04.013

Ma, 2011, Environ. Sci. Technol., 45, 10627, 10.1021/es201808e

Zhang, 2013, Chem. Eng. J., 214, 355, 10.1016/j.cej.2012.10.080

McDonald, 2014, Environ. Chem. Lett., 12, 201, 10.1007/s10311-013-0435-1

Guo, 2013, Int. J. Greenhouse Gas Control, 16, 197, 10.1016/j.ijggc.2013.03.024

Guo, 2015, Int. J. Greenhouse Gas Control, 34, 31, 10.1016/j.ijggc.2014.12.021

Wang, 2011, J. Chem. Eng. Data, 56, 1125, 10.1021/je101014q

Stevanovic, 2013, Int. J. Greenhouse Gas Control, 17, 78, 10.1016/j.ijggc.2013.04.017

Camper, 2008, Ind. Eng. Chem. Res., 47, 8496, 10.1021/ie801002m

Taib, 2012, Chem. Eng. J., 181, 56, 10.1016/j.cej.2011.09.048

Feng, 2012, Chem. Eng. J., 181, 222, 10.1016/j.cej.2011.11.066

Feng, 2013, Chem. Eng. J., 223, 371, 10.1016/j.cej.2013.03.005

Gao, 2013, Int. J. Greenhouse Gas Control, 19, 379, 10.1016/j.ijggc.2013.09.019

Zhou, 2012, Chem. Eng. J., 204–206, 235, 10.1016/j.cej.2012.07.108

Lv, 2015, Chem. Eng. J., 270, 372, 10.1016/j.cej.2015.02.010

Lv, 2015, Chem. Eng. J., 280, 695, 10.1016/j.cej.2015.06.004

Yu, 2012, AIChE J., 58, 2885, 10.1002/aic.12786

Atilhan, 2013, Ind. Eng. Chem. Res., 52, 16774, 10.1021/ie403065u

Z.-Z. Yang , Q.-W.Song and L.-N.He , Capture and Utilization of Carbon Dioxide with Polyethylene Glycol , Springer Science & Business Media, Verlag Berlin Heidelberg , 2012

Li, 2014, J. Chem. Thermodyn., 79, 230, 10.1016/j.jct.2014.08.006

Seddon, 2000, Pure Appl. Chem., 72, 2275, 10.1351/pac200072122275

Cui, 2014, Green Chem., 16, 1211, 10.1039/C3GC41458B

Cui, 2015, Chem. – Eur. J., 21, 5632, 10.1002/chem.201405683

Dolezalek, 1908, Z. Phys. Chem., 64, 727, 10.1515/zpch-1908-0143

van Laar, 1910, Z. Phys. Chem., 72, 723, 10.1515/zpch-1910-7236

van Laar, 1913, Z. Phys. Chem., 83, 599, 10.1515/zpch-1913-8342

Maurer, 1986, Fluid Phase Equilib., 30, 337, 10.1016/0378-3812(86)80067-X

Heidemann, 1976, Proc. Natl. Acad. Sci. U. S. A., 73, 1773, 10.1073/pnas.73.6.1773

J. M. Prausnitz , R. N.Lichtenthaler and E. G.de Azevedo , Molecular Thermodynamics of Fluid Phase Equilibria , Prentice-Hall , New Jersey, US , 3rd edn, 1999

B. E. Poling , J. M.Prausnitz and J. P.O'Connell , The Properties of Gases and Liquids , McGraw-Hill , New York, US , 5th edn, 2004

Austgen, 1989, Ind. Eng. Chem. Res., 28, 1060, 10.1021/ie00091a028

Austgen, 1991, Ind. Eng. Chem. Res., 30, 543, 10.1021/ie00051a016

Chen, 1982, AIChE J., 28, 588, 10.1002/aic.690280410

Chen, 1986, AIChE J., 32, 444, 10.1002/aic.690320311

Soave, 1972, Chem. Eng. Sci., 27, 1197, 10.1016/0009-2509(72)80096-4

Bollas, 2008, AIChE J., 54, 1608, 10.1002/aic.11485

Hessen, 2010, Chem. Eng. Sci., 65, 3638, 10.1016/j.ces.2010.03.010

Zhang, 2011, Fluid Phase Equilib., 311, 67, 10.1016/j.fluid.2011.08.025

Zhang, 2011, Ind. Eng. Chem. Res., 50, 163, 10.1021/ie1006855

Faramarzi, 2009, Fluid Phase Equilib., 282, 121, 10.1016/j.fluid.2009.05.002

Thomsen, 1999, Chem. Eng. Sci., 54, 1787, 10.1016/S0009-2509(99)00019-6

Kuranov, 1997, Fluid Phase Equilib., 136, 147, 10.1016/S0378-3812(97)00138-6

Eastman, 1914, J. Am. Chem. Soc., 36, 2020, 10.1021/ja02187a005

Harris, 1969, Ind. Eng. Chem. Fundam., 8, 180, 10.1021/i160030a001

E. A. Guggenheim , Mixtures: The Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys , Clarendon Press , Oxford, UK , 1952

Barker, 1953, Discuss. Faraday Soc., 15, 188, 10.1039/df9531500188

Abrams, 1975, AIChE J., 21, 116, 10.1002/aic.690210115

Fredenslund, 1975, AIChE J., 21, 1086, 10.1002/aic.690210607

A. Fredenslund and J. M.Sørensen , Group contribution estimation methods , Models for Thermodynamic and Phase Equilibria Calculations , Marcel Dekker , New York , 1994

V. Papaioannou , C. S.Adjiman , G.Jackson and A.Galindo , Group contribution methodologies for the prediction of thermodynamic properties and phase behavior in mixtures , Process Systems Engineering, Molecular Systems Engineering , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim, Germany , 2010 , vol. 6, pp. 135–172

Chapman, 1989, Fluid Phase Equilib., 52, 31, 10.1016/0378-3812(89)80308-5

Chapman, 1990, Ind. Eng. Chem. Res., 29, 1709, 10.1021/ie00104a021

Wertheim, 1984, J. Stat. Phys., 35, 19, 10.1007/BF01017362

Wertheim, 1984, J. Stat. Phys., 35, 35, 10.1007/BF01017363

Wertheim, 1986, J. Stat. Phys., 42, 477, 10.1007/BF01127722

Wertheim, 1986, J. Stat. Phys., 42, 459, 10.1007/BF01127721

Jackson, 1988, Mol. Phys., 65, 1, 10.1080/00268978800100821

Chapman, 1988, Mol. Phys., 65, 1057, 10.1080/00268978800101601

Economou, 1991, AIChE J., 37, 1875, 10.1002/aic.690371212

Gil-Villegas, 1997, J. Chem. Phys., 106, 4168, 10.1063/1.473101

Galindo, 1998, Mol. Phys., 93, 241, 10.1080/00268979809482207

Lafitte, 2013, J. Chem. Phys., 139, 154504, 10.1063/1.4819786

Dufal, 2015, Mol. Phys., 113, 948, 10.1080/00268976.2015.1029027

Blas, 1997, Mol. Phys., 92, 135, 10.1080/00268979709482082

Blas, 1998, Ind. Eng. Chem. Res., 37, 660, 10.1021/ie970449+

Gross, 2001, Ind. Eng. Chem. Res., 40, 1244, 10.1021/ie0003887

Kontogeorgis, 1996, Ind. Eng. Chem. Res., 35, 4310, 10.1021/ie9600203

Lymperiadis, 2007, J. Chem. Phys., 127, 234903, 10.1063/1.2813894

Lymperiadis, 2008, Fluid Phase Equilib., 274, 85, 10.1016/j.fluid.2008.08.005

Papaioannou, 2014, J. Chem. Phys., 140, 54107, 10.1063/1.4851455

Dufal, 2014, J. Chem. Eng. Data, 59, 3272, 10.1021/je500248h

Clark, 2006, Mol. Phys., 104, 3561, 10.1080/00268970601081475

Mac Dowell, 2010, Ind. Eng. Chem. Res., 49, 1883, 10.1021/ie901014t

Rodriguez, 2012, Mol. Phys., 110, 1325, 10.1080/00268976.2012.665504

Jou, 1995, Can. J. Chem. Eng., 73, 140, 10.1002/cjce.5450730116

Böttinger, 2008, Fluid Phase Equilib., 263, 131, 10.1016/j.fluid.2007.09.017

Chremos, 2016, Fluid Phase Equilib., 407, 280, 10.1016/j.fluid.2015.07.052

Button, 1999, Fluid Phase Equilib., 158–160, 175, 10.1016/S0378-3812(99)00150-8

Mac Dowell, 2013, Int. J. Greenhouse Gas Control, 12, 247, 10.1016/j.ijggc.2012.10.013

Mac Dowell, 2010, Comput.-Aided Chem. Eng., 28, 1231, 10.1016/S1570-7946(10)28206-8

Mac Dowell, 2011, J. Phys. Chem. B, 115, 8155, 10.1021/jp107467s

Chremos, 2013, Chem. Eng. Trans., 35, 427

Aronu, 2011, Chem. Eng. Sci., 66, 6393, 10.1016/j.ces.2011.08.042

Arshad, 2014, J. Chem. Eng. Data, 59, 764, 10.1021/je400886w

Gabrielsen, 2005, Ind. Eng. Chem. Res., 44, 3348, 10.1021/ie048857i

Pitzer, 1973, J. Phys. Chem., 77, 268, 10.1021/j100621a026

Vallée, 1999, Ind. Eng. Chem. Res., 38, 3473, 10.1021/ie980777p

Chunxi, 2000, Chem. Eng. Sci., 55, 2975, 10.1016/S0009-2509(99)00550-3

Fürst, 1993, AIChE J., 39, 335, 10.1002/aic.690390213

Blum, 1975, Mol. Phys., 30, 1529, 10.1080/00268977500103051

Debye, 1923, Phys. Z., 24, 185

D. Henderson , L.Blum and A.Tani , Equation of state of ionic fluids ., Equations of State, Theories and Applications, ACS Symposium Series , American Chemical Society , Washington, DC , 1986 , ch. 13, vol. 300, pp. 281–296

Blum, 1977, J. Phys. Chem., 81, 1311, 10.1021/j100528a019

Liu, 1999, Fluid Phase Equilib., 158-160, 595, 10.1016/S0378-3812(99)00082-5

Galindo, 1999, J. Phys. Chem. B, 103, 10272, 10.1021/jp991959f

Gil-Villegas, 2001, Mol. Phys., 99, 531, 10.1080/00268970010018666

Patel, 2003, Ind. Eng. Chem. Res., 42, 3809, 10.1021/ie020918u

Behzadi, 2005, Fluid Phase Equilib., 236, 241, 10.1016/j.fluid.2005.07.019

Schreckenberg, 2014, Mol. Phys., 112, 2339, 10.1080/00268976.2014.910316

Eriksen, 2016, Mol. Phys., 114, 2724, 10.1080/00268976.2016.1236221

Cameretti, 2005, Ind. Eng. Chem. Res., 44, 3355, 10.1021/ie0488142

Held, 2008, Fluid Phase Equilib., 270, 87, 10.1016/j.fluid.2008.06.010

Held, 2009, Fluid Phase Equilib., 279, 141, 10.1016/j.fluid.2009.02.015

Zhao, 2007, J. Chem. Phys., 126, 244503, 10.1063/1.2733673

Herzog, 2010, Fluid Phase Equilib., 297, 23, 10.1016/j.fluid.2010.05.024

Rozmus, 2013, Ind. Eng. Chem. Res., 52, 9979, 10.1021/ie303527j

Maribo-Mogensen, 2012, Ind. Eng. Chem. Res., 51, 5353, 10.1021/ie2029943

Reschke, 2012, J. Phys. Chem. B, 116, 7479, 10.1021/jp3005629

Held, 2014, Chem. Eng. Res. Des., 92, 2884, 10.1016/j.cherd.2014.05.017

Nasrifar, 2010, Ind. Eng. Chem. Res., 49, 7620, 10.1021/ie901181n

Pahlavanzadeh, 2013, J. Chem. Thermodyn., 59, 214, 10.1016/j.jct.2012.12.021

Uyan, 2015, Fluid Phase Equilib., 393, 91, 10.1016/j.fluid.2015.02.026

Kucka, 2003, Chem. Eng. Sci., 58, 3571, 10.1016/S0009-2509(03)00255-0

Kale, 2013, Int. J. Greenhouse Gas Control, 17, 294, 10.1016/j.ijggc.2013.05.019

Yu, 2012, Aerosol Air Qual. Res., 12, 745, 10.4209/aaqr.2012.05.0132

Wang, 2015, Appl. Energy, 158, 275, 10.1016/j.apenergy.2015.08.083

Papadopoulos, 2016, Mol. Syst. Des. Eng., 1, 313, 10.1039/C6ME00049E

Closmann, 2009, Energy Procedia, 1, 1351, 10.1016/j.egypro.2009.01.177

European Commission, Final Report – CESAR (CO 2 Enhanced Separation and Recovery), Community Research and Development Information Service (CORDIS), http://cordis.europa.eu/publication/rcn/13962_en.html , accessed July 2017

Singh, 2008, Process Saf. Environ. Prot., 86, 347, 10.1016/j.psep.2008.03.005

Puxty, 2009, Environ. Sci. Technol., 43, 6427, 10.1021/es901376a

Bommareddy, 2010, Comput. Chem. Eng., 34, 1481, 10.1016/j.compchemeng.2010.02.015

Chemmangattuvalappil, 2013, Ind. Eng. Chem. Res., 52, 7090, 10.1021/ie302516v

Salazar, 2013, Energy Procedia, 37, 257, 10.1016/j.egypro.2013.05.110

Papadopoulos, 2014, Chem. Eng. Trans., 39, 211

Limleamthong, 2016, Green Chem., 18, 6468, 10.1039/C6GC01696K

Adjiman, 2014, Comput.-Aided Chem. Eng., 34, 55, 10.1016/B978-0-444-63433-7.50007-9

Schilling, 2017, Mol. Syst. Des. Eng., 2, 301, 10.1039/C7ME00026J

Bardow, 2010, Ind. Eng. Chem. Res., 49, 2834, 10.1021/ie901281w

Oyarzún, 2011, Energy Procedia, 4, 282, 10.1016/j.egypro.2011.01.053

Stavrou, 2014, Ind. Eng. Chem. Res., 53, 18029, 10.1021/ie502924h

Lampe, 2015, Comput. Chem. Eng., 81, 278, 10.1016/j.compchemeng.2015.04.008

F. E. Pereira , E.Keskes , A.Galindo , G.Jackson and C. S.Adjiman , Integrated design of CO2 capture processes from natural gas , Process Systems Engineering , Wiley-VCH Verlag GmbH & Co. KGaA , 2008 , pp. 231–248

Pereira, 2011, Comput. Chem. Eng., 35, 474, 10.1016/j.compchemeng.2010.06.016

Burger, 2015, AIChE J., 61, 3249, 10.1002/aic.14838

Gopinath, 2016, AIChE J., 62, 3484, 10.1002/aic.15411

Brand, 2012, Comput.-Aided Chem. Eng., 31, 930, 10.1016/B978-0-444-59506-5.50017-1

Arce, 2012, Int. J. Greenhouse Gas Control, 11, 236, 10.1016/j.ijggc.2012.09.004

Mac Dowell, 2013, Int. J. Greenhouse Gas Control, 13, 44, 10.1016/j.ijggc.2012.11.029

Alhajaj, 2016, Int. J. Greenhouse Gas Control, 44, 26, 10.1016/j.ijggc.2015.10.022

Brand, 2016, Faraday Discuss., 192, 337, 10.1039/C6FD00041J

Martynov, 2016, Int. J. Greenhouse Gas Control, 54, 652, 10.1016/j.ijggc.2016.08.010

IPCC , IPCC Special Report on Carbon Dioxide Capture and Storage, Prepared by Working Group III of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, UK and New York, NY, USA , 2005 , p. 442

ZEP, The costs of CO 2 transport: Post-demonstration CCS in the EU , Zero emissions platform (ZEP), 2011

Aspelund, 2007, Int. J. Greenhouse Gas Control, 1, 343, 10.1016/S1750-5836(07)00040-0

Aspelund, 2006, Chem. Eng. Res. Des., 84, 847, 10.1205/cherd.5147

McCoy, 2008, Int. J. Greenhouse Gas Control, 2, 219, 10.1016/S1750-5836(07)00119-3

Brown, 2015, Int. J. Greenhouse Gas Control, 43, 108, 10.1016/j.ijggc.2015.10.014

Skaugen, 2016, Int. J. Greenhouse Gas Control, 54, 627, 10.1016/j.ijggc.2016.07.025

A. Oosterkamp and J.Ramsen , State-of-the-art overview of CO 2 pipeline transport with relevance to offshore pipelines , January, Polytec, 2008

Chapoy, 2013, Int. J. Greenhouse Gas Control, 19, 92, 10.1016/j.ijggc.2013.08.019

Munkejord, 2016, Appl. Energy, 169, 499, 10.1016/j.apenergy.2016.01.100

Porter, 2015, Int. J. Greenhouse Gas Control, 36, 161, 10.1016/j.ijggc.2015.02.016

Liljemark, 2011, Energy Procedia, 4, 3040, 10.1016/j.egypro.2011.02.215

J. J. Moore , A.Lerche , H.Delgado , T.Allison and J.Pacheco , Proceedings of the Fortieth Turbomachinery Symposium , 2011 , pp. 107–120

Pei, 2014, Int. J. Greenhouse Gas Control, 30, 86, 10.1016/j.ijggc.2014.09.001

P. A. Calado , Modeling and design synthesis of a CCS compression train system via MINLP optimization , Tecnico Lisboa , 2012 , pp. 1–122

Witkowski, 2012, Arch. Mech. Eng., 59, 343, 10.2478/v10180-012-0018-x

Witkowski, 2013, Energy Convers. Manage., 76, 665, 10.1016/j.enconman.2013.07.087

Romeo, 2009, Appl. Therm. Eng., 29, 1744, 10.1016/j.applthermaleng.2008.08.010

Middleton, 2009, Energy Policy, 37, 1052, 10.1016/j.enpol.2008.09.049

Alhajaj, 2013, Energy Procedia, 37, 2552, 10.1016/j.egypro.2013.06.138

Lazic, 2013, Proc. Inst. Mech. Eng., Part E, 228, 210, 10.1177/0954408913500447

Fimbres Weihs, 2012, Int. J. Greenhouse Gas Control, 8, 150, 10.1016/j.ijggc.2012.02.008

Middleton, 2012, Comput., Environ. Urban Syst., 36, 18, 10.1016/j.compenvurbsys.2011.08.002

Roussanaly, 2013, Int. J. Greenhouse Gas Control, 19, 584, 10.1016/j.ijggc.2013.05.031

Wetenhall, 2014, Int. J. Greenhouse Gas Control, 30, 197, 10.1016/j.ijggc.2014.09.016

Chandel, 2010, Energy Convers. Manage., 51, 2825, 10.1016/j.enconman.2010.06.020

Knoope, 2014, Int. J. Greenhouse Gas Control, 22, 25, 10.1016/j.ijggc.2013.12.016

Wang, 2014, Int. J. Greenhouse Gas Control, 31, 165, 10.1016/j.ijggc.2014.10.010

Mac Dowell, 2015, Int. J. Greenhouse Gas Control, 48, 327, 10.1016/j.ijggc.2016.01.043

Chaczykowski, 2012, Int. J. Greenhouse Gas Control, 9, 446, 10.1016/j.ijggc.2012.05.007

Mechleri, 2017, Chem. Eng. Res. Des., 119, 130, 10.1016/j.cherd.2017.01.016

Cooper, 2014, Energy Procedia, 63, 2412, 10.1016/j.egypro.2014.11.264

Gale, 2004, Energy, 29, 1319, 10.1016/j.energy.2004.03.090

Shuter, 2011, Energy Procedia, 4, 2261, 10.1016/j.egypro.2011.02.115

S. Connolly and L.Cusco , IChemE Symposium Series , 2007, pp. 1–5

Woolley, 2014, Int. J. Greenhouse Gas Control, 27, 221, 10.1016/j.ijggc.2014.06.001

Witlox, 2011, Energy Procedia, 4, 2253, 10.1016/j.egypro.2011.02.114

M. Bilio , S.Brown , M.Fairweather and H.Mahgerefteh , CO 2 pipelines material and safety considerations, IChemE Symposium Series: Hazards XXI Process Safety and Environmental Protection, Manchester, 2009, pp. 423–429

Mahgerefteh, 2012, Chem. Eng. Sci., 74, 200, 10.1016/j.ces.2012.02.037

Cosham, 2008, Journal of Pipeline Engineering, 7, 115

W. A. Maxey , Fracture initiation, propagation and arrest, Proceedings of the 5th Symposium in Line Pressure Research, Houston, 1974

A. Cosham , D. G.Jones , K.Armstrong , D.Allason and J.Barnett , Analysis of two dense phase carbon dioxide full-scale fracture propagation tests, 10th International Pipeline Conference, American Society of Mechanical Engineers , 2014, pp. 1–15

Mahgerefteh, 2010, Journal of Pipeline Engineering, 9, 265

Nordhagen, 2012, Comput. Struct., 94-95, 13, 10.1016/j.compstruc.2012.01.004

Aursand, 2016, Eng. Struct., 123, 192, 10.1016/j.engstruct.2016.05.012

Roussanaly, 2014, Int. J. Greenhouse Gas Control, 28, 283, 10.1016/j.ijggc.2014.06.019

Knoope, 2015, Int. J. Greenhouse Gas Control, 41, 174, 10.1016/j.ijggc.2015.07.013

Kjärstad, 2016, Int. J. Greenhouse Gas Control, 54, 168, 10.1016/j.ijggc.2016.08.024

R. Skagestad , N.Eldrup , H. R.Hansen , S.Belfroid , A.Mathisen , A.Lach and H. A.Haugen , Ship transport of CO 2 , 3918, Tel-Tek, 2014

T. N. Vermeulen , Knowledge Sharing Report – CO 2 Liquid Logistics Shipping Concept (LLSC): Overall Supply Chain Optimization , Global CCS Institute (GCCSI), 2011

N. Rydberg and D.Langlet , CCS in the Baltic Sea region – Bastor 2 , Elforsk, 2014

Kolster, 2017, Int. J. Greenhouse Gas Control, 58, 127, 10.1016/j.ijggc.2017.01.014

Gale, 2015, Int. J. Greenhouse Gas Control, 40, 1, 10.1016/j.ijggc.2015.06.019

GCCSI, The global status of CCS: 2015 , Global CCS Institute, Melbourne, Australia, 2015

Duan, 2006, Mar. Chem., 98, 131, 10.1016/j.marchem.2005.09.001

Spycher, 2010, Transp. Porous Media, 82, 173, 10.1007/s11242-009-9425-y

Cadogan, 2014, J. Chem. Eng. Data, 59, 519, 10.1021/je401008s

Cadogan, 2015, J. Chem. Eng. Data, 60, 181, 10.1021/je5009203

Bando, 2004, J. Chem. Eng. Data, 49, 1328, 10.1021/je049940f

Fleury, 2008, J. Chem. Eng. Data, 53, 2505, 10.1021/je8002628

McBride-Wright, 2015, J. Chem. Eng. Data, 60, 171, 10.1021/je5009125

Calabrese, 2017, J. Chem. Eng. Data

Hebach, 2002, J. Chem. Eng. Data, 47, 1540, 10.1021/je025569p

Chiquet, 2007, Energy Convers. Manage., 48, 736, 10.1016/j.enconman.2006.09.011

Chalbaud, 2009, Adv. Water Resour., 32, 98, 10.1016/j.advwatres.2008.10.012

Georgiadis, 2010, J. Chem. Eng. Data, 55, 4168, 10.1021/je100198g

Chow, 2016, J. Chem. Thermodyn., 93, 392, 10.1016/j.jct.2015.08.006

Li, 2012, J. Chem. Eng. Data, 57, 1078, 10.1021/je201062r

Li, 2012, J. Chem. Eng. Data, 57, 1369, 10.1021/je300304p

Peng, 2015, Chem. Geol., 403, 74, 10.1016/j.chemgeo.2015.03.012

Peng, 2016, Faraday Discuss., 192, 545, 10.1039/C6FD00048G

Menke, 2015, Environ. Sci. Technol., 49, 4407, 10.1021/es505789f

K. S. Pedersen , P. L.Christensen and S. J.Azeem , Phase Behavior of Petroleum Reservoir Fluids , CRC Press , Boca Raton, FL, USA , Second edn, 2015 , p. 450

Iglauer, 2014, Int. J. Greenhouse Gas Control, 22, 325, 10.1016/j.ijggc.2014.01.006

Andrew, 2014, Adv. Water Resour., 68, 24, 10.1016/j.advwatres.2014.02.014

Singh, 2016, Water Resour. Res., 52, 1716, 10.1002/2015WR018072

S. Benson , R.Pini , C.Reynolds and S.Krevor , Relative permeability analyses to describe multi-phase flow in CO 2 storage reservoirs , Global CCS Institute, 2013

S. M. Benson , F.Hingerl , L.Zuo , R.Pini , S.Krevor , C.Reynolds , B.Niu , R.Calvo and A.Niemi , Relative permeability for multi-phase flow in CO 2 storage reservoirs. Part II: resolving fundamental issues and filling data gaps , Global CCS Institute, 2015

P. Egermann , C. A.Chalbaud , J.Duquerroix and Y.Le Gallo , An integrated approach to parameterize reservoir models for CO 2 injection in aquifers, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers , Paper SPE-102308-MS, San Antonio, Texas, USA, 2006

Manceau, 2015, Water Resour. Res., 51, 2885, 10.1002/2014WR015725

Niu, 2015, Water Resour. Res., 51, 2009, 10.1002/2014WR016441

Reynolds, 2015, Water Resour. Res., 51, 9464, 10.1002/2015WR018046

Krevor, 2015, Int. J. Greenhouse Gas Control, 40, 221, 10.1016/j.ijggc.2015.04.006

Al-Menhali, 2016, Environ. Sci. Technol., 50, 2727, 10.1021/acs.est.5b05925

Juanes, 2006, Water Resour. Res., 42, W12418, 10.1029/2005WR004806

Salathiel, 1973, J. Pet. Technol., 25, 1216, 10.2118/4104-PA

Spiteri, 2008, Soc. Pet. Eng. J., 13, 277

Al-Menhali, 2016, Environ. Sci. Technol., 50, 10282, 10.1021/acs.est.6b03111

Koelbl, 2014, Int. J. Greenhouse Gas Control, 27, 81, 10.1016/j.ijggc.2014.04.024

Perrin, 2010, Transp. Porous Media, 82, 93, 10.1007/s11242-009-9426-x

Krause, 2013, Transp. Porous Media, 98, 565, 10.1007/s11242-013-0161-y

Li, 2015, Adv. Water Resour., 83, 389, 10.1016/j.advwatres.2015.07.010

Rabinovich, 2015, J. Pet. Sci. Eng., 134, 60, 10.1016/j.petrol.2015.07.021

Meckel, 2015, Int. J. Greenhouse Gas Control, 34, 85, 10.1016/j.ijggc.2014.12.010

Krevor, 2011, Geophys. Res. Lett., 38, L15401, 10.1029/2011GL048239

Saadatpoor, 2010, Transp. Porous Media, 82, 3, 10.1007/s11242-009-9446-6

R. A. Chadwick and D. J.Noy , Geological Society, London, Petroleum Geology Conference series , 2010, 7, pp. 1171–1182

Cavanagh, 2014, Int. J. Greenhouse Gas Control, 21, 101, 10.1016/j.ijggc.2013.11.017

Hovorka, 2006, Environ. Geosci., 13, 105, 10.1306/eg.11210505011

Lu, 2012, J. Geophys. Res.: Solid Earth, 117, B03208, 10.1029/2011JB008939

A. C. Gringarten , Evolution of reservoir management techniques: From independent methods to an integrated methodology. Impact on petroleum engineering curriculum, graduate teaching and competitive advantage of oil companies, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Society of Petroleum Engineers , Paper SPE-39713-MS, Kuala Lumpur, Malaysia, 1998

M. A. Flett , G. J.Beacher , J.Brantjes , A. J.Burt , C.Dauth , F. M.Koelmeyer , R.Lawrence , S.Leigh , J.McKenna , R.Gurton , W. F.Robinson and T.Tankersley , Gorgon Project: Subsurface evaluation of carbon dioxide disposal under Barrow Island. SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers , Paper SPE-116372-MS, Perth, Australia, 2008

Flett, 2009, Energy Procedia, 1, 3031, 10.1016/j.egypro.2009.02.081

Shell, Peterhead CCS Project Storage Development Plan, Document number PCCS-00-PT-AA-5726-00001 , Shell UK Limited, 2015

ETI, Progressing Development of the UK's Strategic Carbon Dioxide Storage Resource , Energy Technologies Institute (ETI), Pale Blue Dot Energy & Axis Well Technology, 2016

Verdon, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, E2762, 10.1073/pnas.1302156110

White, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 8747, 10.1073/pnas.1316465111

Grude, 2014, Int. J. Greenhouse Gas Control, 27, 178, 10.1016/j.ijggc.2014.05.013

Chadwick, 2009, Pet. Geosci., 15, 59, 10.1144/1354-079309-793

Shell, Quest carbon capture and storage project reaches significant one-year milestone , Shell Canada News Press Release, http://www.shell.ca/en_ca/media/news-and-media-releases/news-releases-2016/shell_s-quest-carbon-capture-and-storage-project-reaches-signifi.html , accessed October 2016

Bergmo, 2014, Energy Procedia, 63, 5114, 10.1016/j.egypro.2014.11.541

Birkholzer, 2012, Int. J. Greenhouse Gas Control, 7, 168, 10.1016/j.ijggc.2012.01.001

Buscheck, 2012, Int. J. Greenhouse Gas Control, 6, 230, 10.1016/j.ijggc.2011.11.007

Cihan, 2015, Int. J. Greenhouse Gas Control, 42, 175, 10.1016/j.ijggc.2015.07.025

Qi, 2009, Int. J. Greenhouse Gas Control, 3, 195, 10.1016/j.ijggc.2008.08.004

Leonenko, 2008, Environ. Sci. Technol., 42, 2742, 10.1021/es071578c

Burton, 2009, SPE Reservoir Eval. Eng., 12, 399, 10.2118/110650-PA

Jenkins, 2015, Int. J. Greenhouse Gas Control, 40, 312, 10.1016/j.ijggc.2015.05.009

R. A. Chadwick , R.Arts and O.Eiken , Geological Society, London, Petroleum Geology Conference series , 2005, 6 , pp. 1385–1399

Pevzner, 2015, Geophysics, 80, B105, 10.1190/geo2014-0460.1

Ghaderi, 2009, Geophysics, 74, O17, 10.1190/1.3054659

Trani, 2011, Geophysics, 76, C1, 10.1190/1.3549756

Ajo-Franklin, 2013, Int. J. Greenhouse Gas Control, 18, 497, 10.1016/j.ijggc.2012.12.018

Dance, 2016, Int. J. Greenhouse Gas Control, 47, 210, 10.1016/j.ijggc.2016.01.042

Gilfillan, 2009, Nature, 458, 614, 10.1038/nature07852

Gilfillan, 2011, Int. J. Greenhouse Gas Control, 5, 1507, 10.1016/j.ijggc.2011.08.008

Myers, 2013, Appl. Geochem., 30, 125, 10.1016/j.apgeochem.2012.06.001

LaForce, 2014, Int. J. Greenhouse Gas Control, 26, 9, 10.1016/j.ijggc.2014.04.009

Cameron, 2016, Int. J. Greenhouse Gas Control, 52, 32, 10.1016/j.ijggc.2016.06.014

Lewicki, 2007, Geophys. Res. Lett., 34, L24402, 10.1029/2007GL032047

Shitashima, 2015, Int. J. Greenhouse Gas Control, 38, 135, 10.1016/j.ijggc.2014.12.011

Bickle, 2013, Rev. Mineral. Geochem., 77, 15, 10.2138/rmg.2013.77.2

Manceau, 2014, Int. J. Greenhouse Gas Control, 22, 272, 10.1016/j.ijggc.2014.01.007

Esposito, 2012, Int. J. Greenhouse Gas Control, 7, 62, 10.1016/j.ijggc.2011.12.002

Vialle, 2016, Int. J. Greenhouse Gas Control, 44, 11, 10.1016/j.ijggc.2015.10.007

Pacala, 2004, Science, 305, 968, 10.1126/science.1100103

S. M. Benson , K.Bennaceur , P.Cook , J.Davison , H.de Coninck , K.Farhat , A.Ramirez , D.Simbeck , T.Surles , P.Verma and I.Wright , Carbon Capture and Storage , Global Energy Assessment–Toward a Sustainable Future , 2012 , ch. 13, pp. 993–1068

Dooley, 2012, Energy Procedia, 37, 5141, 10.1016/j.egypro.2013.06.429

G. Cook and P.Zakkour , CCS deployment in the context of regional developments in meeting long-term climate change objectives, Report 2015/TR3 , IEA Greenhouse Gas R&D Programme (IEAGHG), 2015

Bachu, 2015, Int. J. Greenhouse Gas Control, 40, 188, 10.1016/j.ijggc.2015.01.007

Birkholzer, 2015, Int. J. Greenhouse Gas Control, 40, 203, 10.1016/j.ijggc.2015.03.022

M. Winkler , R.Abernathy , M.Nicolo , H.Huang , A.Wang , S.Zhang , A.Simon , C.Clark , S.Crouch , H.De Groot , R.El Mahdy , M.Smith , S.Malik , S.Bourne , R.Pierpont and V.Hugonet , The dynamic aspect of formation-storage use for CO 2 sequestration, SPE International Conference on CO 2 Capture, Storage, and Utilization, Society of Petroleum Engineers, Paper SPE-139730-MS, New Orleans, Louisiana, USA, 2010

Goodman, 2013, Int. J. Greenhouse Gas Control, 18, 329, 10.1016/j.ijggc.2013.07.016

Thibeau, 2011, Oil Gas Sci. Technol., 66, 81, 10.2516/ogst/2011004

Bader, 2014, Energy Procedia, 63, 2779, 10.1016/j.egypro.2014.11.300

Gorecki, 2015, Int. J. Greenhouse Gas Control, 42, 213, 10.1016/j.ijggc.2015.07.018

A. Lothe , B. U.Emmel , P.Bergmo , G. M.Mortensen and P.Frykman , Updated estimate of storage capacity and evaluation of Seal for selected Aquifers (D26), NORDICCS Technical Report D 6.3.1401 (D26) , Nordic CCS Competence Centre (NORDICCS), 2015

Nordbotten, 2005, Transp. Porous Media, 58, 339, 10.1007/s11242-004-0670-9

Zhou, 2008, Int. J. Greenhouse Gas Control, 2, 626, 10.1016/j.ijggc.2008.02.004

Mathias, 2009, Transp. Porous Media, 79, 265, 10.1007/s11242-008-9316-7

Golding, 2011, J. Fluid Mech., 678, 248, 10.1017/jfm.2011.110

Szulczewski, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 5185, 10.1073/pnas.1115347109

Huang, 2014, Int. J. Greenhouse Gas Control, 20, 73, 10.1016/j.ijggc.2013.11.004

Agada, 2017, Int. J. Greenhouse Gas Control, 65, 128, 10.1016/j.ijggc.2017.08.014

Kolster, 2018, Int. J. Greenhouse Gas Control, 68, 77, 10.1016/j.ijggc.2017.10.011

Global CCS Institute, CCS images, Understanding CCS Resources , http://www.globalccsinstitute.com/understanding-ccs/information-resource , Melbourne, Australia , accessed January 2017

Gozalpour, 2005, Oil Gas Sci. Technol., 60, 537, 10.2516/ogst:2005036

Chen, 2010, J. Can. Pet. Technol., 49, 75, 10.2118/141650-PA

Mac Dowell, 2017, Nat. Clim. Change, 7, 243, 10.1038/nclimate3231

IEA, Storing CO 2 through enhanced oil recovery-Combining EOR with CO 2 storage (EOR+) for profit , International Energy Agency Insights Series, Paris, France, 2015

B. Hitchon , Best Practices for Validating CO2 Geological Storage: Observations and Guidance from the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project , Geoscience Publishing Ltd. , Sherwood Park, Alberta, Canada , 2012

MIT, Weyburn-Midale Fact Sheet: Carbon Dioxide Capture and Storage Project , https://sequestration.mit.edu/tools/projects/weyburn.html , Carbon Capture and Sequestration Technologies program at MIT, 2016

MIT, Boundary Dam Fact Sheet: Carbon Dioxide Capture and Storage Project , https://sequestration.mit.edu/tools/projects/boundary_dam.html , Carbon Capture and Sequestration Technologies program at MIT, 2016

van Bergen, 2004, Energy, 29, 1611, 10.1016/j.energy.2004.03.063

M. L. Godec , Global technology roadmap for CCS in industry: Sectoral assessment CO2 enhanced oil recovery , Advanced Resources International, Inc. and United Nations Industrial Development Organization (UNIDO) , 2011

J. J. Dooley , R. T.Dahowski , C. L.Davidson , M. A.Wise , N.Gupta , S. H.Kim , E. L.Malone and B. M.Institute , Carbon dioxide capture and geologic storage: A core element of a global energy technology strategy to address climate change , The Global Energy Technology Strategy Program, Battelle Memorial Institute , USA , 2006

IEA , Technology roadmap: Carbon capture and storage , International Energy Agency , Paris, France , 2013 , 2013 edn

CIA , The World Factbook , https://www.cia.gov/library/publications/the-world-factbook/rankorder/2241rank.html , Central Intelligence Agency, United States , 2014

Rystad Energy , UCube Upstream Database , https://www.rystadenergy.com/Products/EnP-Solutions/UCube , Oslo, Norway , 2017

Kolster, 2017, Energy Environ. Sci., 10, 2594, 10.1039/C7EE02102J

QCCSRC, Qatar Carbonates and Carbon Storage Research Centre , http://www.imperial.ac.uk/qatar-carbonates-and-carbon-storage , Imperial College London, UK, 2017

Mazzotti, 2009, J. Supercrit. Fluids, 47, 619, 10.1016/j.supflu.2008.08.013

Li, 2015, J. Nat. Gas Sci. Eng., 26, 1607, 10.1016/j.jngse.2014.08.010

Ersland, 2009, Energy Procedia, 1, 3477, 10.1016/j.egypro.2009.02.139

LEILAC, Low Emissions Intensity Lime & Cement, A European Union Horizon 2020 Research & Innovation Project , http://www.project-leilac.eu/ , Calix Europe Ltd, 2017

Peters, 2011, ChemSusChem, 4, 1216, 10.1002/cssc.201000447

Quadrelli, 2011, ChemSusChem, 4, 1194, 10.1002/cssc.201100473

Markewitz, 2012, Energy Environ. Sci., 5, 7281, 10.1039/c2ee03403d

Otto, 2015, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E

Aresta, 2014, Chem. Rev., 114, 1709, 10.1021/cr4002758

Cuellar-Franca, 2015, J. CO2 Util., 9, 82, 10.1016/j.jcou.2014.12.001

Centi, 2013, Energy Environ. Sci., 6, 1711, 10.1039/c3ee00056g

Klankermayer, 2016, Angew. Chem., Int. Ed., 55, 7296, 10.1002/anie.201507458

Scott, 2015, Chem. Eng. News, 93, 10, 10.1021/cen-09345-cover

Goeppert, 2012, Energy Environ. Sci., 5, 7833, 10.1039/c2ee21586a

Sanna, 2014, Chem. Soc. Rev., 43, 8049, 10.1039/C4CS00035H

von der Assen, 2016, Environ. Sci. Technol., 50, 1093, 10.1021/acs.est.5b03474

Langanke, 2014, Green Chem., 16, 1865, 10.1039/C3GC41788C

von der Assen, 2014, Green Chem., 16, 3272, 10.1039/C4GC00513A

Sternberg, 2016, ACS Sustainable Chem. Eng., 4, 4156, 10.1021/acssuschemeng.6b00644

van der Giesen, 2014, Environ. Sci. Technol., 48, 7111, 10.1021/es500191g

European Commission Joint Research Centre and Institute for Environment and Sustainability, International Reference Life Cycle Data System (ILCD) Handbook-General guide for Life Cycle Assessment-Detailed guidance , Publications Office of the European Union , Luxembourg , 1st edn, 2010

von der Assen, 2013, Energy Environ. Sci., 6, 2721, 10.1039/c3ee41151f

Levasseur, 2010, Environ. Sci. Technol., 44, 3169, 10.1021/es9030003

Peters, 2011, Environ. Sci. Technol., 45, 8633, 10.1021/es200627s

Brandão, 2013, Int. J. Life Cycle Assess., 18, 230, 10.1007/s11367-012-0451-6

Bruhn, 2016, Environ. Sci. Policy, 60, 38, 10.1016/j.envsci.2016.03.001

Thenert, 2016, Angew. Chem., Int. Ed., 55, 12266, 10.1002/anie.201606427

Lumpp, 2011, MTZ worldwide eMagazine, 72, 34, 10.1365/s38313-011-0027-z

Schmitz, 2016, Fuel, 185, 67, 10.1016/j.fuel.2016.07.085

Meylan, 2015, J. CO2 Util., 12, 101, 10.1016/j.jcou.2015.05.003

IEA, Key world energy statistics , International Energy Agency, www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf , 2017

K. Gutmann , J.Huscher , D.Urbaniak , A.White , C.Schaible and M.Bricke , Europe's Dirty 30: How the EU's coal-fired power plants are undermining its climate efforts , Climate Action Network (CAN)Europe, Health and Environment Alliance (HEAL), WWF European Policy Office, European Environmental Bureau (EEB) and Climate Alliance Germany, Brussels, Belgium, 2014

Aresta, 2013, J. CO2 Util., 3–4, 65, 10.1016/j.jcou.2013.08.001

Mitchell, 2015, AIChE J., 61, 2374, 10.1002/aic.14910

Naims, 2016, Environ. Sci. Pollut. Res., 23, 22226, 10.1007/s11356-016-6810-2

Sternberg, 2015, Energy Environ. Sci., 8, 389, 10.1039/C4EE03051F

Dimitriou, 2015, Energy Environ. Sci., 8, 1775, 10.1039/C4EE04117H

Carbon Recycling International, World's Largest CO 2 Methanol Plant , Kopavogur, Iceland, http://carbonrecycling.is/george-olah/2016/2/14/worlds-largest-co2-methanol-plant , accessed March 2017

Roh, 2016, Int. J. Greenhouse Gas Control, 47, 250, 10.1016/j.ijggc.2016.01.028

Götz, 2016, Renewable Energy, 85, 1371, 10.1016/j.renene.2015.07.066

Pérez-Fortes, 2016, Appl. Energy, 161, 718, 10.1016/j.apenergy.2015.07.067

Klankermayer, 2016, Philos. Trans. R. Soc., A, 374, 1, 10.1098/rsta.2015.0315

Kiss, 2016, Chem. Eng. J., 284, 260, 10.1016/j.cej.2015.08.101

Rönsch, 2016, Fuel, 166, 276, 10.1016/j.fuel.2015.10.111

Scott, 2017, ChemSusChem, 10, 1085, 10.1002/cssc.201601814

C. M. Jens , L.Müller , K.Leonhard and A.Bardow , To integrate or not to integrate – Techno-economic and life cycle assessment of CO2 capture and conversion to methyl formate using methanol , The Royal Society of Chemistry, submitted

Martin, 2015, Green Chem., 17, 5114, 10.1039/C5GC01893E

Herron, 2016, Energy Technol., 4, 1369, 10.1002/ente.201600163

Machhammer, 2016, Chem. Eng. Technol., 39, 1185, 10.1002/ceat.201600023

Postels, 2016, Int. J. Hydrogen Energy, 41, 23204, 10.1016/j.ijhydene.2016.09.167

Yuan, 2016, Ind. Eng. Chem. Res., 55, 3383, 10.1021/acs.iecr.5b03277

Leitner, 2017, Angew. Chem., Int. Ed., 56, 5412, 10.1002/anie.201607257

Grinberg Dana, 2016, Angew. Chem., Int. Ed., 55, 8798, 10.1002/anie.201510618

Sharifzadeh, 2015, Renewable Sustainable Energy Rev., 47, 151, 10.1016/j.rser.2015.03.001

Pan, 2016, J. Cleaner Prod., 137, 617, 10.1016/j.jclepro.2016.07.112

OECD , OECD Environmental Outlook for the Chemicals Industry , Organisation for Economic Co-operation and Development , Paris, France , 2001

Earles, 2011, Int. J. Life Cycle Assess., 16, 445, 10.1007/s11367-011-0275-9

Kätelhön, 2016, Environ. Sci. Technol., 50, 12575, 10.1021/acs.est.6b04270

Leitner, 1995, Angew. Chem., Int. Ed., 34, 2207, 10.1002/anie.199522071

Moret, 2014, Nat. Commun., 5, 4017, 10.1038/ncomms5017

Schaub, 2011, Angew. Chem., Int. Ed., 50, 7278, 10.1002/anie.201101292

Pérez-Fortes, 2016, Int. J. Hydrogen Energy, 41, 16444, 10.1016/j.ijhydene.2016.05.199

Beydoun, 2014, Angew. Chem., Int. Ed., 53, 11010, 10.1002/anie.201403711

Tlili, 2015, Green Chem., 17, 157, 10.1039/C4GC01614A

Leino, 2010, Appl. Catal., A, 383, 1, 10.1016/j.apcata.2010.05.046

Garcia-Herrero, 2016, ACS Sustainable Chem. Eng., 4, 2088, 10.1021/acssuschemeng.5b01515

North, 2010, Green Chem., 12, 1514, 10.1039/c0gc00065e

Kember, 2011, Chem. Commun., 47, 141, 10.1039/C0CC02207A

Zhu, 2016, Nature, 540, 354, 10.1038/nature21001

Jens, 2016, Green Chem., 18, 5621, 10.1039/C6GC01202G

von der Assen, 2014, Chem. Soc. Rev., 43, 7982, 10.1039/C3CS60373C

von der Assen, 2015, Faraday Discuss., 183, 291, 10.1039/C5FD00067J

Pawelzik, 2013, Resour., Conserv. Recycl., 73, 211, 10.1016/j.resconrec.2013.02.006

Jones, 2015, Faraday Discuss., 183, 327, 10.1039/C5FD00063G

van Heek, 2017, Energy Policy, 105, 53, 10.1016/j.enpol.2017.02.016

InfoCuria, Judgement of the Court (First Chamber) of 19 January 2017, Schaefer Kalk GmbH & Co. KG versus Bundesrepublik Deutschland. Document ECLI:EU:C:2017:29 , Case-law of the Court of Justice, http://curia.europa.eu/juris/liste.jsf?language=en&num=C-460/15 , 2017

Wright, 1936, J. Aeronaut. Sci., 3, 122, 10.2514/8.155

Boston Consulting Group, Perspectives on Experience , Boston Consulting Group Inc., Boston, MA, United States , 1972

Yeh, 2012, Energy Econ., 34, 762, 10.1016/j.eneco.2011.11.006

Rubin, 2007, Int. J. Greenhouse Gas Control, 1, 188, 10.1016/S1750-5836(07)00016-3

Rubin, 2015, Energy Policy, 86, 198, 10.1016/j.enpol.2015.06.011

Li, 2012, Appl. Energy, 93, 348, 10.1016/j.apenergy.2011.12.046

van den Broek, 2009, Prog. Energy Combust. Sci., 35, 457, 10.1016/j.pecs.2009.05.002

M. Monea , Plenary presentation, 12th International Conference on Greenhouse Gas Control Technologies (GHGT-12), Austin, Texas, US, 2014

J. Schwartz , High-Stakes Test for Carbon Capture , New York Times, 3 January, 2017

Canadell, 2014, Nat. Commun., 5, 5282, 10.1038/ncomms6282

Kemper, 2015, Int. J. Greenhouse Gas Control, 40, 401, 10.1016/j.ijggc.2015.06.012

Archer Daniels Midland Company, ADM Begins Operations for Second Carbon Capture and Storage Project , https://www.adm.com/news/news-releases/adm-begins-operations-for-second-carbon-capture-and-storage-project-1 , accessed June 2017

Gollakota, 2012, Greenhouse Gases: Sci. Technol., 2, 346, 10.1002/ghg.1305

Finley, 2014, Greenhouse Gases: Sci. Technol., 4, 571, 10.1002/ghg.1433

Jones, 2014, Greenhouse Gases: Sci. Technol., 4, 617, 10.1002/ghg.1438

H. Karlsson and L.Byström , Global Status of BECCS Projects 2010 , Global CCS Institute and Biorecro, https://www.globalccsinstitute.com/publications/global-status-beccs-projects-2010 , 2011

K. Whiriskey , Carbon dioxide removal-Necessary but unloved. Insight to upcoming report on CO 2 removal. Presentation, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13) , Lausanne, Switzerland, 2016

Woolf, 2010, Nat. Commun., 1, 56, 10.1038/ncomms1053

IEAGHG, Potential for Biomass and Carbon Dioxide Capture and Storage. Report 2011/06 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2011

IEAGHG, Potential for Biomethane Production and Carbon Dioxide Capture and Storage. Report 2013/11 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2013

McLaren, 2012, Process Saf. Environ. Prot., 90, 489, 10.1016/j.psep.2012.10.005

van Vuuren, 2013, Clim. Change, 118, 15, 10.1007/s10584-012-0680-5

Arasto, 2014, Energy Procedia, 63, 6756, 10.1016/j.egypro.2014.11.711

B. Caldecott , G.Lomax and M.Workman , Stranded carbon assets and negative emissions technologies. Working paper, Smith School of Enterprise and the Environment , University of Oxford, 2015

NRC, Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration , National Research Council and National Academy of Sciences, The National Academies Press , Washington, DC, United States , 2015

Global Carbon Project, Global Carbon Atlas: CO 2 emissions , accessed March 2017

Keith, 2006, Clim. Change, 74, 17, 10.1007/s10584-005-9026-x

S. Rose , R.Beach , K.Calvin , B.McCarl , J.Petrusa , B.Sohngen , R.Youngman , A.Diamant , F.de la Chesnaye , J.Edmonds , R.Rosenzweig and M.Wise , Estimating global greenhouse gas emissions offset supplies: Accounting for investment risks and other market realties , Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2013

Smith, 2013, Clim. Change, 118, 89, 10.1007/s10584-012-0682-3

L. Clarke , K.Jiang , K.Akimoto , M.Babiker , G.Blanford , K.Fisher-Vanden , J.-C.Hourcade , V.Krey , E.Kriegler , A.Löschel , D.McCollum , S.Paltsev , S.Rose , P. R.Shukla , M.Tavoni , B.van der Zwaan and D.van Vuuren , Assessing Transformation Pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA , 2014

H. Chum , A.Faaij , J.Moreira , G.Berndes , P.Dharnija , H.Dong and B.Gabrielle , Bioenergy. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change , Cambridge University Press , Cambridge, UK, New York, NY, USA , 2011 , pp. 209–332

R. Slade , R.Saunders , R.Gross and A.Bauen , Energy from biomass: the size of the global resource. An assessment of the evidence that biomass can make a major contribution to future global energy supply , Imperial College Centre for Energy Policy and Technology and UK Energy Research Centre, London, United Kingdom, 2011

IEA and FAO, How2Guide for Bioenergy: Roadmap Development and Implementation , International Energy Agency and the Food and Agriculture Organisation of the United Nations, 2017

FAO, Food wastage footprint: Impacts on natural resources. Summary report , Food and Agriculture Organization (FAO) of the United Nations, http://www.fao.org/docrep/018/i3347e/i3347e.pdf , 2013

Welfle, 2014, Biomass Bioenergy, 70, 249, 10.1016/j.biombioe.2014.08.001

J. Seay and F.You , 4-Biomass supply, demand, and markets, Biomass Supply Chains for Bioenergy and Biorefining , Woodhead Publishing , 2016 , pp. 85–100

D. Yue and F.You , 7-Biomass and biofuel supply chain modeling and optimization, Biomass Supply Chains for Bioenergy and Biorefining , Woodhead Publishing , 2016 , pp. 149–166

European Environment Agency (EEA), Opinion of the EEA Scientific Committee on Greenhouse Gas Accounting in Relation to Bioenergy , 2011

T. Searchinger and R.Heimlich , Avoiding bioenergy competition for food crops and land, Working paper, Installment 9 of Creating a Sustainable Food Future , World Resources Institute, Washington, DC, United States, 2015

Hartmann, 2008, Naturwissenschaften, 95, 1159, 10.1007/s00114-008-0434-4

R. Socolow , M.Desmond , R.Aines , J.Blackstock , O.Bolland , T.Kaarsberg , N.Lewis , M.Mazzotti , A.Pfeffer , K.Sawyer , J.Siirola , B.Smit and J.Wilcox , Direct Air Capture of CO2 with Chemicals-A Technology Assessment for the APS Panel on Public Affairs , American Physical Society (APS) Physics, 2011

Schuiling, 2006, Clim. Change, 74, 349, 10.1007/s10584-005-3485-y

S. Wood , K.Sebastian and S. J.Scherr , Pilot analysis of global ecosystems: Agroecosystems , International Food Policy Research Institute and World Resources Institute, Washington, DC, United States, 2000

Kang, 2013, J. Agric. Sci., 5, 129

FAOSTAT, FAOSTAT land database , accessed February 2017

Campbell, 2008, Environ. Sci. Technol., 42, 5791, 10.1021/es800052w

Fritz, 2013, Environ. Sci. Technol., 47, 1688

Lackner, 2010, Sci. Am., 302, 66, 10.1038/scientificamerican0610-66

Kriegler, 2013, Clim. Change, 118, 45, 10.1007/s10584-012-0681-4

P. Smith , M.Bustamante , H.Ahammad , H.Clark , H.Dong , E.Elsiddig , H.Haberl , R.Harper , J.House , M.Jafari , O.Masera , C.Mbow , N.Ravindranath , C.Rice , C.Robledo Abad , A.Romanovskaya , F.Sperling and F.Tubiello , Agriculture, Forestry and Other Land Use (AFOLU). In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the FifthAssessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA , 2014

M. Fajardy , Investigating the water-energy-carbon and land nexus of bio-energy and CCS (BECCS). Presentation, 13th International Conference on Greenhouse Gas Control Technologies (GHGT-13) , Lausanne, Switzerland, 2016

Mac Dowell, 2016, Faraday Discuss., 192, 241, 10.1039/C6FD00051G

M. Flugge , J.Lewandrowski , J.Rosenfeld , C.Boland , T.Hendrickson , K.Jaglo , S.Kolansky , K.Moffroid , M.Riley-Gilbert and D.Pape , A life-cycle analysis of the greenhouse gas emissions of corn-based ethanol. Report prepared by ICF under USDA Contract No. AG-3142-D-16-0243 , US Department of Agriculture, Climate Change Program Office, Washington, DC, https://www.usda.gov/oce/climate_change/mitigation_technologies/USDAEthanolReport_20170107.pdf , 2017

Thomson, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 19633, 10.1073/pnas.0910467107

J. Gustavsson , C.Cederberg , U.Sonesson , R.van Otterdijk and A.Meybeck , Global food losses and food waste-Extent, causes and prevention , Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy, http://www.fao.org/docrep/014/mb060e/mb060e00.pdf , 2011

HLPE, Food losses and waste in the context of sustainable food systems , High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome, Italy, 2014

Al-Qayim, 2015, Int. J. Greenhouse Gas Control, 43, 82, 10.1016/j.ijggc.2015.10.013

M. Pourkashanian , J.Szuhanszki and K.Finney , BECCS-Technical challenges and opportunities. Presentation, UKCCSRC BECCS Specialist Meeting, London , 2016

C. Gough and P.Upham , Biomass energy with carbon capture and storage (BECCS): A review. Working Paper 147 , The Tyndall Centre, University of Manchester, Manchester Institute of Innovation Research, 2010

Luckow, 2010, Int. J. Greenhouse Gas Control, 4, 865, 10.1016/j.ijggc.2010.06.002

C. Hamelinck , Fact checks for the biofuels sustainability debate , Ecofys Webinar, http://www.slideshare.net/Ecofys/factsheets-on-the-sustainability-of-biofuels , 2014

IEAGHG, Biomass and CCS-Guidance for accounting for negative emissions. Report 2014/05 , IEA Greenhouse Gas R&D Programme, Cheltenham, UK, 2014

J. Dooley , Keynote II-3, Industrial CO 2 removal: CO 2 capture from ambient air and geological. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Geoengineering , IPCC Working Group III Technical Support Unit, Potsdam Institute for Climate Impact Research, Potsdam, Germany , 2012, pp. 30–33

Lomax, 2015, Energy Policy, 78, 125, 10.1016/j.enpol.2014.10.002

Meerman, 2013, Int. J. Greenhouse Gas Control, 16, 311, 10.1016/j.ijggc.2013.01.051

Thomas, 2010, Land Use Policy, 27, 880, 10.1016/j.landusepol.2009.12.002

R. Sands , S.Malcolm , S.Suttles and E.Marshall , Dedicated energy crops and competition for agricultural land, ERR-223 , U.S. Department of Agriculture, Economic Research Service, 2017

Wise, 2009, Science, 324, 1183, 10.1126/science.1168475

P. Upham and T.Roberts , Public perceptions of CCS: the results of Near CO 2 European focus groups , Tyndall Centre, The University of Manchester, accessed March 2015, 2010

Mander, 2011, Energy Procedia, 4, 6360, 10.1016/j.egypro.2011.02.653

Dowd, 2015, Energies, 8, 4024, 10.3390/en8054024

Peters, 2016, Elementa, 4, 000116

J. Ranganathan , D.Vennard , R.Waite , B.Lipinski , T.Searchinger , P.Dumas , A.Forslund , H.Guyomard , S.Manceron , E.Marajo-Petitzon , C.Le Mouël , P.Havlik , M.Herrero , X.Zhang , S.Wirsenius , F.Ramos , X.Yan , M.Phillips and R.Mungkung , Shifting diets for a sustainable food future. Working paper, Installment 11 of Creating a Sustainable Food Future , World Resources Institute, Washington, DC, United States, 2016

Wirsenius, 2010, Agr. Syst., 103, 621, 10.1016/j.agsy.2010.07.005

C. Mooney , The suddenly urgent quest to remove carbon dioxide from the air , The Washington Post, 2016

D. Biello , 400 PPM: Can Artificial Trees Help Pull CO 2 from the Air? , Scientific American, 2013

E. Kolbert , Can carbon-dioxide removal save the world? , The New Yorker, 2017

Sucking up carbon, Greenhouse gases must be scrubbed from the air , The Economist, 2017

M. Gunther , Startups have figured out how to remove carbon from the air. Will anyone pay them to do it? , The Guardian, 2015

M. K. McNutt , W.Abdalati , K.Caldeira , S. C.Doney , P. G.Falkowski , S.Fetter , J. R.Fleming , S. P.Hamburg , G.Morgan , J. E.Penner , R. T.Pierrehumbert , P. J.Rasch , L. M.Russell , J. T.Snow , D. W.Titley and J.Wilcox , Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration , The National Academies Press , Washington, D. C., USA , 2015

Holmes, 2012, Philos. Trans. R. Soc., A, 370, 4380, 10.1098/rsta.2012.0137

Mazzotti, 2013, Clim. Change, 118, 119, 10.1007/s10584-012-0679-y

Lackner, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 13156, 10.1073/pnas.1108765109

Wilcox, 2014, Energy Environ. Sci., 7, 1769, 10.1039/c4ee00001c

Stolaroff, 2008, Environ. Sci. Technol., 42, 2728, 10.1021/es702607w

Zeman, 2007, Environ. Sci. Technol., 41, 7558, 10.1021/es070874m

Mahmoudkhani, 2009, Int. J. Greenhouse Gas Control, 3, 376, 10.1016/j.ijggc.2009.02.003

Rubin, 2007, Energy Policy, 35, 4444, 10.1016/j.enpol.2007.03.009

Rubin, 2015, Int. J. Greenhouse Gas Control, 40, 378, 10.1016/j.ijggc.2015.05.018

Wilcox, 2017, Environ. Res. Lett., 12, 065001, 10.1088/1748-9326/aa6de5

EU, Brussels European Council 8/9 March 2007 Presidency Conclusions , Council of the European Union, 2007

P. Dixon and T.Mitchell , Lesson Learned: Lessons and Evidence Derived from UK CCS Programmes, 2008–2015 , Carbon Capture and Storage Association, 2016

TUC, The economic benefits of carbon capture and storage in the UK , Carbon Capture & Storage Association (CCSA) & Trades Union Congress (TUC), 2014

NAO, Briefing for the House of Commons Environmental Audit Committee: Sustainability in the spending review , National Audit Office, 2016

D. Radov , A.Carmel , H.Fearnehough , C.Koenig , S.Forrest , G.Strbac , M.Aunedi and D.Pudjianto UK Renewable Subsidies and Whole System Costs: The Case for Allowing Biomass Conversion for a CfD , NERA Economic Consulting & Imperial College London , 2016

DECC, CCS Cost Reduction Taskforce Final Report , UK Carbon Capture and Storage Cost Reduction Task Force, London, UK, 2013

DECC, CCS Roadmap: Supporting deployment of carbon capture and storage in the UK , Department of Energy & Climate Change, 2012

Capture Power Limited, White Rose: K.04 Full-chain FEED lessons learnt , White Rose Carbon Capture & Storage Project, Department of Energy and Climate Change, 2016

Capture Power Limited, White Rose: K.01 Full chain FEED summary report , White Rose Carbon Capture & Storage Project, Department of Energy and Climate Change, 2016

SCCS, CO 2 storage and Enhanced Oil Recovery in the North Sea: Securing a low-carbon future for the UK , Scottish Carbon Capture & Storage, 2015

E. Davey , Government agreement on energy policy sends clear, durable signal to investors , Department of Energy & Climate Change, https://www.gov.uk/government/news/government-agreement-on-energy-policy-sends-clear-durable-signal-to-investors , 2012

Kitschelt, 1986, Br. J. Polit. Sci., 16, 57, 10.1017/S000712340000380X

Kennedy, 2007, Science, 316, 515, 10.1126/science.1142978

Krohn, 1999, Renewable Energy, 16, 954, 10.1016/S0960-1481(98)00339-5

Stern, 2016, Nature Climate Change, 6, 547, 10.1038/nclimate3027

Ashworth, 2015, Int. J. Greenhouse Gas Control, 40, 449, 10.1016/j.ijggc.2015.06.002

IEA, Carbon capture and storage: The solution for deep emissions reductions , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA), Paris, France, 2015

GCCSI, The global status of CCS: 2016 summary report , Global CCS Institute, Melbourne, Australia, 2016

IEA, Energy and Climate Change: World Energy Outlook Special Briefing for COP21 , Organisation for Economic Co-operation and Development (OECD) and International Energy Agency (IEA), Paris, France, 2015

GCCSI and UNIDO, Carbon capture and storage in industrial applications: Technology synthesis report , Global CCS Institute and United Nations Industrial Development Organization (UNIDO), Vienna, 2010

CAN, Climate Action Network Europe (CAN Europe) position paper on CO 2 capture and storage , http://www.caneurope.org/publications/can-europe-positions/90-carbon-capture-and-storage , 2006

E. Rochon , E.Bjureby , P.Johnston , R.Oakley , D.Santillo , N.Schulz and G.von Goerne , False Hope: Why carbon capture and storage won't save the climate , Greenpeace International , Amsterdam, The Netherlands , 2008

Terwel, 2012, Int. J. Greenhouse Gas Control, 9, 41, 10.1016/j.ijggc.2012.02.017

Cuppen, 2015, Environment and Planning A, 47, 1963, 10.1177/0308518X15597408

Tjernshaugen, 2011, Environ. Polit., 20, 227, 10.1080/09644016.2011.551029

Buhr, 2011, Global Environ. Change, 21, 336, 10.1016/j.gloenvcha.2011.01.021

A. Doyle , Norway drops carbon capture plan it had likened to “Moon landing” , Reuters, http://www.reuters.com/article/us-norway-carbon-idUSBRE98J0QB20130920 , 2013

G. Fouche , Norway says could achieve full carbon capture and storage by 2022, Reuters , http://www.reuters.com/article/us-norway-ccs-idUSKCN0ZK1LW , 2016

S. Ansolobehere , J.Beer , J.Deutch , A. D.Ellerman , S. J.Friedman , H.Herzog , H. D.Jacoby , P. L.Joskow , G.McRae , R.Lester , E. J.Moniz and E.Steinfeld , The future of coal: Options for a carbon-constrained world , Massachusetts Institute of Technology (MIT) , Cambridge, MA, US , 2007

NAO, Carbon capture and storage: lessons from the competition for the first UK demonstration , National Audit Office (NAO), 2012

Committee of Public Accounts, Carbon Capture and Storage inquiry, Sixty-fourth Report of Session 2016–17, 28 April 2017 , House of Commons, London, UK, https://publications.parliament.uk/pa/cm201617/cmselect/cmpubacc/1036/1036.pdf , accessed July 2017

R. Syal , Carbon capture scheme collapsed 'over government department disagreements', The Guardian, https://www.theguardian.com/environment/2017/jan/20/carbon-capture-scheme-collapsed-over-government-department-disagreements , 2017

Krüger, 2017, Energy Policy, 100, 58, 10.1016/j.enpol.2016.09.059

de Coninck, 2008, Energy Policy, 36, 929, 10.1016/j.enpol.2007.11.013

Wara, 2007, Nature, 445, 595, 10.1038/445595a

Lupion, 2013, Int. J. Greenhouse Gas Control, 19, 19, 10.1016/j.ijggc.2013.08.009

R. Oxburgh , Parliamentary Debate, House of Lords, 9 September 2015, column 1443 , http://www.publications.parliament.uk/pa/ld201516/ldhansrd/text/150909-0001.htm , accessed December 2016

McGlashan, 2007, J. Mech. Eng. Sci., 221, 1057, 10.1243/09544062JMES424

J. Fisher , A.Zoelle , M.Turner and V.Chou , Quality Guidelines for Energy System Studies: Performing a Techno-economic Analysis for Power Generation Plants , National Energy Technology Laboratory (NETL), 2015

T. Fout , A.Zoelle , D.Keairns , L.Pinkerton , M.Turner , M.Woods , N.Kuehn , V.Shah and V.Chou , Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3 , National Energy Technology Laboratory, 2015

M. Matuszewski , J.Ciferno , J.Marano and S.Chen , Research and Development Goals for CO2 Capture Technology , National Energy Technology Laboratory, https://www.netl.doe.gov/research/energy-analysis/search-publications/vuedetails?id=817 , 2011

D. C. Miller , D. A.Agarwal , D.Bhattacharyya , J.Boverhof , Y. W.Cheah , Y.Chen , J.Eslick , J.Leek , J.Ma , P.Mahapatra , B.Ng , N.Sahinidis , C.Tong and S. E.Zitney , Innovative computational tools and models for the design, optimization of control of carbon capture processes, 26th European Symposium on Computer Aided Process Engineering (ESCAPE 26), Computer Aided Chemical Engineering , 2016, pp. 2391–2396