Carbon capture and conversion using metal–organic frameworks and MOF-based materials

Chemical Society Reviews - Tập 48 Số 10 - Trang 2783-2828
Meili Ding1,2,3,4,5, Robinson W. Flaig6,7,8,9,10, Hai‐Long Jiang1,2,3,4,5, Omar M. Yaghi6,7,8,9,11
1CAS Key Laboratory of Soft Matter Chemistry
2Collaborative Innovation Center of Suzhou Nano Science and Technology
3Department of Chemistry
4Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
5University of Science and Technology of China
6Department of Chemistry, University of California-Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Kavli Energy NanoSciences Institute, Berkeley, California, USA
7Kavli Energy NanoSciences Institute
8Lawrence Berkeley National Laboratory
9Materials Sciences Division
10University of California-Berkeley
11UC Berkeley-KACST Joint Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia

Tóm tắt

This review summarizes recent advances and highlights the structure–property relationship on metal–organic framework-based materials for carbon dioxide capture and conversion.

Từ khóa


Tài liệu tham khảo

Wang, 2011, Energy Environ. Sci., 4, 42, 10.1039/C0EE00064G

Sanz-Pérez, 2016, Chem. Rev., 116, 11840, 10.1021/acs.chemrev.6b00173

Mikkelsen, 2010, Energy Environ. Sci., 3, 43, 10.1039/B912904A

Zhang, 2017, Angew. Chem., Int. Ed., 56, 11326, 10.1002/anie.201612214

Carbon dioxide: projected emissions and concentrations, 2014, http://ipcc-data.org/observ/ddc_co2.html

D'Alessandro, 2010, Angew. Chem., Int. Ed., 49, 6058, 10.1002/anie.201000431

Wang, 2014, Energy Environ. Sci., 7, 3478, 10.1039/C4EE01647E

Sneddon, 2014, Adv. Energy Mater., 4, 1301873, 10.1002/aenm.201301873

Cui, 2016, Chem. Soc. Rev., 45, 4307, 10.1039/C5CS00462D

Zhang, 2010, Energy Environ. Sci., 3, 408, 10.1039/B914206A

Li, 2017, Chem, 3, 928, 10.1016/j.chempr.2017.10.009

Xie, 2013, Nat. Commun., 4, 1960, 10.1038/ncomms2960

Feng, 2012, Chem. Soc. Rev., 41, 6010, 10.1039/c2cs35157a

Schoedel, 2016, Nat. Energy, 1, 16034, 10.1038/nenergy.2016.34

Trickett, 2017, Nat. Rev. Mater., 2, 17045, 10.1038/natrevmats.2017.45

Wang, 2016, Angew. Chem., Int. Ed., 55, 2308, 10.1002/anie.201507145

Long, 2009, Chem. Soc. Rev., 38, 1213, 10.1039/b903811f

Zhou, 2012, Chem. Rev., 112, 673, 10.1021/cr300014x

Zhou, 2014, Chem. Soc. Rev., 43, 5415, 10.1039/C4CS90059F

Eddaoudi, 2001, Acc. Chem. Res., 34, 319, 10.1021/ar000034b

Lu, 2014, Chem. Soc. Rev., 43, 5561, 10.1039/C4CS00003J

Seo, 2000, Nature, 404, 982, 10.1038/35010088

Jiao, 2019, Mater. Today, 10.1016/j.mattod.2018.10.038

Li, 2016, Adv. Mater., 28, 8819, 10.1002/adma.201601133

Kirchon, 2018, Chem. Soc. Rev., 47, 8611, 10.1039/C8CS00688A

Kitagawa, 2009, Nat. Chem., 1, 689, 10.1038/nchem.454

Kitagawa, 2004, Angew. Chem., Int. Ed., 43, 2334, 10.1002/anie.200300610

Chen, 2010, Acc. Chem. Res., 43, 1115, 10.1021/ar100023y

Corma, 2010, Chem. Rev., 110, 4606, 10.1021/cr9003924

Ma, 2010, Chem. Commun., 46, 44, 10.1039/B916295J

Jiang, 2011, Chem. Commun., 47, 3351, 10.1039/c0cc05419d

Gu, 2016, Chem. Soc. Rev., 45, 3122, 10.1039/C6CS00051G

Horcajada, 2012, Chem. Rev., 112, 1232, 10.1021/cr200256v

Howarth, 2016, Nat. Rev. Mater., 1, 15018, 10.1038/natrevmats.2015.18

Li, 2012, Chem. Rev., 112, 869, 10.1021/cr200190s

Suh, 2012, Chem. Rev., 112, 782, 10.1021/cr200274s

Sumida, 2012, Chem. Rev., 112, 724, 10.1021/cr2003272

Schneemann, 2014, Chem. Soc. Rev., 43, 6062, 10.1039/C4CS00101J

Sun, 2016, Angew. Chem., Int. Ed., 55, 3566, 10.1002/anie.201506219

Furukawa, 2013, Science, 341, 1230444, 10.1126/science.1230444

Dissegna, 2018, Adv. Mater., 1704501, 10.1002/adma.201704501

Cui, 2018, Chem. Soc. Rev., 47, 5740, 10.1039/C7CS00879A

Nugent, 2013, Nature, 495, 80, 10.1038/nature11893

Gascon, 2014, ACS Catal., 4, 361, 10.1021/cs400959k

Dhakshinamoorthy, 2016, Angew. Chem., Int. Ed., 55, 5414, 10.1002/anie.201505581

Wang, 2011, J. Am. Chem. Soc., 133, 13445, 10.1021/ja203564w

Zhang, 2014, Energy Environ. Sci., 7, 2868, 10.1039/C4EE00143E

Hu, 2014, Chem. Soc. Rev., 43, 5815, 10.1039/C4CS00010B

Liu, 2014, Chem. Soc. Rev., 43, 6011, 10.1039/C4CS00094C

Ramaswamy, 2014, Chem. Soc. Rev., 43, 5913, 10.1039/C4CS00093E

Zhang, 2014, J. Am. Chem. Soc., 136, 7241, 10.1021/ja502643p

Zhang, 2014, Chem. Soc. Rev., 43, 5982, 10.1039/C4CS00103F

Gao, 2016, Angew. Chem., Int. Ed., 55, 5472, 10.1002/anie.201511484

Zhu, 2014, Chem. Soc. Rev., 43, 5468, 10.1039/C3CS60472A

Nagarkar, 2013, Angew. Chem., Int. Ed., 52, 2881, 10.1002/anie.201208885

Lei, 2018, Adv. Energy Mater., 1801587, 10.1002/aenm.201801587

Van de Voorde, 2014, Chem. Soc. Rev., 43, 5766, 10.1039/C4CS00006D

Wang, 2016, Coord. Chem. Rev., 307, 361, 10.1016/j.ccr.2015.09.002

Hu, 2014, ACS Catal., 4, 4409, 10.1021/cs5012662

Falcaro, 2016, Coord. Chem. Rev., 307, 237, 10.1016/j.ccr.2015.08.002

Doherty, 2014, Acc. Chem. Res., 47, 396, 10.1021/ar400130a

Li, 2011, Coord. Chem. Rev., 255, 1791, 10.1016/j.ccr.2011.02.012

Li, 2018, Adv. Mater., 1705512, 10.1002/adma.201705512

Liang, 2018, Angew. Chem., Int. Ed., 57, 9604, 10.1002/anie.201800269

Beyzavi, 2015, Front. Energy Res., 2, 63, 10.3389/fenrg.2014.00063

He, 2016, Small, 12, 6309, 10.1002/smll.201602711

Maina, 2017, Mater. Horiz., 4, 345, 10.1039/C6MH00484A

Liang, 2019, Coord. Chem. Rev., 378, 32, 10.1016/j.ccr.2017.11.013

Yang, 2017, Chem. Soc. Rev., 46, 4774, 10.1039/C6CS00724D

Jiao, 2018, Adv. Mater., 30, 1703663, 10.1002/adma.201703663

Zhu, 2017, Chem. Rev., 117, 8129, 10.1021/acs.chemrev.7b00091

Dhakshinamoorthy, 2018, Chem. Soc. Rev., 47, 8134, 10.1039/C8CS00256H

Zhang, 2017, Joule, 1, 77, 10.1016/j.joule.2017.08.008

Seoane, 2015, Chem. Soc. Rev., 44, 2421, 10.1039/C4CS00437J

Li, 2009, Chem. Soc. Rev., 38, 1477, 10.1039/b802426j

Li, 2016, Coord. Chem. Rev., 307, 106, 10.1016/j.ccr.2015.05.005

Zhang, 2013, Chem. Commun., 49, 653, 10.1039/C2CC35561B

Liu, 2012, Chem. Soc. Rev., 41, 2308, 10.1039/C1CS15221A

Zhai, 2017, Acc. Chem. Res., 50, 407, 10.1021/acs.accounts.6b00526

Yu, 2017, Chem. Rev., 117, 9674, 10.1021/acs.chemrev.6b00626

Denny, 2016, Nat. Rev. Mater., 1, 16078, 10.1038/natrevmats.2016.78

Kitao, 2017, Chem. Soc. Rev., 46, 3108, 10.1039/C7CS00041C

Yao, 2014, Chem. Soc. Rev., 43, 4470, 10.1039/C3CS60480B

Aijaz, 2014, J. Am. Chem. Soc., 136, 6790, 10.1021/ja5003907

Gadipelli, 2014, Energy Environ. Sci., 7, 2232, 10.1039/C4EE01009D

Wang, 2015, Small, 11, 3097, 10.1002/smll.201500084

Mahmood, 2016, Adv. Energy Mater., 6, 1600423, 10.1002/aenm.201600423

Chen, 2018, Coord. Chem. Rev., 362, 1, 10.1016/j.ccr.2018.02.008

Wang, 2019, ACS Catal., 9, 130, 10.1021/acscatal.8b04055

Xiao, 2019, Acc. Chem. Res., 52, 356, 10.1021/acs.accounts.8b00521

Yi, 2017, Small Methods, 1, 1700187, 10.1002/smtd.201700187

Xiao, 2017, Small, 13, 1700632, 10.1002/smll.201700632

Li, 1998, J. Am. Chem. Soc., 120, 8571, 10.1021/ja981669x

Li, 1999, Nature, 402, 276, 10.1038/46248

Eddaoudi, 2000, J. Am. Chem. Soc., 122, 1391, 10.1021/ja9933386

Li, 1998, J. Am. Chem. Soc., 120, 2186, 10.1021/ja974172g

Chen, 2000, J. Am. Chem. Soc., 122, 11559, 10.1021/ja003159k

Millward, 2005, J. Am. Chem. Soc., 127, 17998, 10.1021/ja0570032

McDonald, 2012, J. Am. Chem. Soc., 134, 7056, 10.1021/ja300034j

Farha, 2010, Nat. Chem., 2, 944, 10.1038/nchem.834

Yuan, 2010, Angew. Chem., Int. Ed., 49, 5357, 10.1002/anie.201001009

Loiseau, 2006, J. Am. Chem. Soc., 128, 10223, 10.1021/ja0621086

Lee, 2008, Angew. Chem., Int. Ed., 47, 7741, 10.1002/anie.200801488

Guo, 2011, Angew. Chem., Int. Ed., 50, 3178, 10.1002/anie.201007583

Surblé, 2006, J. Am. Chem. Soc., 128, 14889, 10.1021/ja064343u

Demessence, 2009, J. Am. Chem. Soc., 131, 8784, 10.1021/ja903411w

Sumida, 2010, Chem. Sci., 1, 184, 10.1039/c0sc00179a

Li, 2013, Nat. Commun., 4, 1538, 10.1038/ncomms2552

Liang, 2017, Nat. Commun., 8, 1233, 10.1038/s41467-017-01166-3

Queen, 2014, Chem. Sci., 5, 4569, 10.1039/C4SC02064B

Tan, 2011, Chem. Commun., 47, 4487, 10.1039/c1cc10378d

Mu, 2009, Chem. Commun., 2493, 10.1039/b819828d

Hou, 2011, Chem. Commun., 47, 5464, 10.1039/c1cc10990a

Zhang, 2010, Chem. Commun., 46, 7205, 10.1039/c0cc01236j

Tan, 2011, Chem. Commun., 47, 10647, 10.1039/c1cc14118j

Mallick, 2010, J. Mater. Chem., 20, 9073, 10.1039/c0jm01125h

Li, 2013, J. Mater. Chem. A, 1, 495, 10.1039/C2TA00635A

Dietzel, 2009, J. Mater. Chem., 19, 7362, 10.1039/b911242a

Kong, 2012, J. Am. Chem. Soc., 134, 14341, 10.1021/ja306822p

Caskey, 2008, J. Am. Chem. Soc., 130, 10870, 10.1021/ja8036096

Wu, 2010, J. Phys. Chem. Lett., 1, 1946, 10.1021/jz100558r

Queen, 2011, J. Phys. Chem. C, 115, 24915, 10.1021/jp208529p

Dietzel, 2008, Chem. Commun., 5125, 10.1039/b810574j

Mason, 2011, Energy Environ. Sci., 4, 3030, 10.1039/c1ee01720a

Herm, 2011, J. Am. Chem. Soc., 133, 5664, 10.1021/ja111411q

Rochelle, 2009, Science, 325, 1652, 10.1126/science.1176731

MacDowell, 2010, Energy Environ. Sci., 3, 1645, 10.1039/c004106h

Couck, 2009, J. Am. Chem. Soc., 131, 6326, 10.1021/ja900555r

Yang, 2011, Chem. Commun., 47, 9603, 10.1039/c1cc13543k

Kim, 2013, Catal. Today, 204, 85, 10.1016/j.cattod.2012.08.014

Si, 2011, Energy Environ. Sci., 4, 4522, 10.1039/c1ee01380g

Flaig, 2017, J. Am. Chem. Soc., 139, 12125, 10.1021/jacs.7b06382

Fracaroli, 2014, J. Am. Chem. Soc., 136, 8863, 10.1021/ja503296c

An, 2010, J. Am. Chem. Soc., 132, 38, 10.1021/ja909169x

Li, 2012, Angew. Chem., Int. Ed., 51, 1412, 10.1002/anie.201105966

McDonald, 2011, Chem. Sci., 2, 2022, 10.1039/c1sc00354b

Vaidhyanathan, 2010, Science, 330, 650, 10.1126/science.1194237

Lin, 2010, J. Am. Chem. Soc., 132, 6654, 10.1021/ja1009635

Vaidhyanathan, 2012, Angew. Chem., Int. Ed., 51, 1826, 10.1002/anie.201105109

Qin, 2012, Chem. Sci., 3, 2114, 10.1039/c2sc00017b

Liao, 2012, J. Am. Chem. Soc., 134, 17380, 10.1021/ja3073512

Lin, 2012, J. Am. Chem. Soc., 134, 784, 10.1021/ja2092882

Song, 2015, J. Mater. Chem. A, 3, 19417, 10.1039/C5TA05481H

Lin, 2012, Inorg. Chem., 51, 9950, 10.1021/ic301463z

Panda, 2011, Chem. Commun., 47, 2011, 10.1039/C0CC04169F

Vaidhyanathan, 2009, Chem. Commun., 5230, 10.1039/b911481e

Li, 2008, Chem. – Eur. J., 14, 2771, 10.1002/chem.200701447

Chen, 2015, J. Mater. Chem. A, 3, 4945, 10.1039/C4TA05524A

Gassensmith, 2011, J. Am. Chem. Soc., 133, 15312, 10.1021/ja206525x

Zhang, 2016, Chem. Mater., 28, 6276, 10.1021/acs.chemmater.6b02511

Debatin, 2010, Angew. Chem., Int. Ed., 49, 1258, 10.1002/anie.200906188

Mosca, 2018, Chem. – Eur. J., 24, 13170, 10.1002/chem.201802240

Smaldone, 2010, Angew. Chem., Int. Ed., 49, 8630, 10.1002/anie.201002343

Banerjee, 2009, J. Am. Chem. Soc., 131, 3875, 10.1021/ja809459e

Jiang, 2015, ChemSusChem, 8, 878, 10.1002/cssc.201403230

Zhao, 2011, Chem. – Eur. J., 17, 5101, 10.1002/chem.201002818

Amrouche, 2011, J. Phys. Chem. C, 115, 16425, 10.1021/jp202804g

Yang, 2013, Angew. Chem., Int. Ed., 52, 10316, 10.1002/anie.201302682

Chen, 2017, Chem. – Eur. J., 23, 4060, 10.1002/chem.201606038

Song, 2014, Chem. Commun., 50, 12105, 10.1039/C4CC05833J

Jiang, 2012, J. Am. Chem. Soc., 134, 14690, 10.1021/ja3063919

Eddaoudi, 2002, Science, 295, 469, 10.1126/science.1067208

Deng, 2012, Science, 336, 1018, 10.1126/science.1220131

Nandi, 2015, Sci. Adv., 1, e1500421, 10.1126/sciadv.1500421

Xiang, 2012, Nat. Commun., 3, 954, 10.1038/ncomms1956

Jiang, 2013, Coord. Chem. Rev., 257, 2232, 10.1016/j.ccr.2013.03.017

Han, 2013, J. Phys. Chem. C, 117, 71, 10.1021/jp308751x

Chen, 2007, Inorg. Chem., 46, 1233, 10.1021/ic0616434

Prasad, 2012, Chem. – Eur. J., 18, 8673, 10.1002/chem.201200456

Yao, 2012, J. Mater. Chem., 22, 10345, 10.1039/c2jm15933c

Yang, 2012, Nat. Mater., 11, 710, 10.1038/nmat3343

Ling, 2013, Chem. Commun., 49, 78, 10.1039/C2CC37174J

Chen, 2009, J. Am. Chem. Soc., 131, 16027, 10.1021/ja906302t

Zheng, 2010, J. Am. Chem. Soc., 132, 17062, 10.1021/ja106903p

Zhao, 2015, J. Am. Chem. Soc., 137, 1396, 10.1021/ja512137t

Horike, 2009, Nat. Chem., 1, 695, 10.1038/nchem.444

Salles, 2009, Angew. Chem., Int. Ed., 48, 8335, 10.1002/anie.200902998

Thallapally, 2008, J. Am. Chem. Soc., 130, 16842, 10.1021/ja806391k

Henke, 2012, J. Am. Chem. Soc., 134, 9464, 10.1021/ja302991b

Carrington, 2017, Nat. Chem., 9, 882, 10.1038/nchem.2747

Hiraide, 2017, ACS Appl. Mater. Interfaces, 9, 41066, 10.1021/acsami.7b13771

Park, 2012, J. Am. Chem. Soc., 134, 99, 10.1021/ja209197f

Lyndon, 2013, Angew. Chem., Int. Ed., 52, 3695, 10.1002/anie.201206359

Nijem, 2011, J. Am. Chem. Soc., 133, 12849, 10.1021/ja2051149

Henke, 2011, J. Am. Chem. Soc., 133, 2064, 10.1021/ja109317e

Wang, 2015, Chem. Mater., 27, 1502, 10.1021/cm503533r

Foo, 2016, J. Am. Chem. Soc., 138, 3022, 10.1021/jacs.5b10491

Henke, 2010, Chem. – Eur. J., 16, 14296, 10.1002/chem.201002341

Choi, 2009, Angew. Chem., Int. Ed., 48, 6865, 10.1002/anie.200902836

Dybtsev, 2004, Angew. Chem., Int. Ed., 43, 5033, 10.1002/anie.200460712

Nguyen, 2014, Angew. Chem., Int. Ed., 53, 10645, 10.1002/anie.201403980

Moghadam, 2017, Chem. Sci., 8, 3989, 10.1039/C7SC00278E

Nandi, 2017, J. Mater. Chem. A, 5, 535, 10.1039/C6TA07145G

Cohen, 2012, Chem. Rev., 112, 970, 10.1021/cr200179u

Hu, 2014, ChemSusChem, 7, 734, 10.1002/cssc.201301163

McDonald, 2015, Nature, 519, 303, 10.1038/nature14327

Siegelman, 2017, J. Am. Chem. Soc., 139, 10526, 10.1021/jacs.7b05858

Milner, 2018, Chem. Sci., 9, 160, 10.1039/C7SC04266C

Liao, 2016, Chem. Sci., 7, 6528, 10.1039/C6SC00836D

Andirova, 2015, ChemSusChem, 8, 3405, 10.1002/cssc.201500580

Yeon, 2015, J. Mater. Chem. A, 3, 19177, 10.1039/C5TA02357B

Lee, 2015, Chem. Sci., 6, 3697, 10.1039/C5SC01191D

Wu, 2015, J. Mater. Chem. A, 3, 4248, 10.1039/C4TA06496H

Planas, 2013, J. Am. Chem. Soc., 135, 7402, 10.1021/ja4004766

Deria, 2013, J. Am. Chem. Soc., 135, 16801, 10.1021/ja408959g

Lau, 2013, Chem. Commun., 49, 3634, 10.1039/C2CC37251G

Zhang, 2012, Angew. Chem., Int. Ed., 51, 9330, 10.1002/anie.201203594

Li, 2016, ChemSusChem, 9, 2832, 10.1002/cssc.201600768

Kronast, 2016, Chem. – Eur. J., 22, 12800, 10.1002/chem.201602318

Hu, 2014, ChemSusChem, 7, 2791, 10.1002/cssc.201402378

Park, 2010, Chem. – Eur. J., 16, 11662, 10.1002/chem.201001549

Chen, 2016, Angew. Chem., Int. Ed., 55, 9932, 10.1002/anie.201604023

Hong, 2014, Chem. – Eur. J., 20, 426, 10.1002/chem.201303801

Hu, 2015, Chem. – Eur. J., 21, 17246, 10.1002/chem.201503078

Sánchez-Laínez, 2017, J. Mater. Chem. A, 5, 25601, 10.1039/C7TA08778K

An, 2010, J. Am. Chem. Soc., 132, 5578, 10.1021/ja1012992

Li, 2013, Chem. Commun., 49, 11385, 10.1039/c3cc47031h

Liu, 2017, Inorg. Chem., 56, 4263, 10.1021/acs.inorgchem.7b00538

Park, 2013, Chem. Sci., 4, 685, 10.1039/C2SC21253F

Kinik, 2016, ACS Appl. Mater. Interfaces, 8, 30992, 10.1021/acsami.6b11087

Cota, 2017, Coord. Chem. Rev., 351, 189, 10.1016/j.ccr.2017.04.008

Sezginel, 2016, Langmuir, 32, 1139, 10.1021/acs.langmuir.5b04123

Lin, 2013, Sci. Rep., 3, 1859, 10.1038/srep01859

Lin, 2014, J. Mater. Chem. A, 2, 14658, 10.1039/C4TA01174K

Ding, 2016, J. Am. Chem. Soc., 138, 10100, 10.1021/jacs.6b06051

Darunte, 2016, ACS Sustainable Chem. Eng., 4, 5761, 10.1021/acssuschemeng.6b01692

Kumar, 2016, Angew. Chem., Int. Ed., 55, 7857, 10.1002/anie.201603320

Liu, 2013, Energy Environ. Sci., 6, 818, 10.1039/c3ee23421e

Chakraborty, 2016, Chem. Commun., 52, 11378, 10.1039/C6CC05289D

Zhao, 2013, ACS Appl. Mater. Interfaces, 5, 4951, 10.1021/am4006989

Policicchio, 2014, ACS Appl. Mater. Interfaces, 6, 101, 10.1021/am404952z

Bian, 2014, Microporous Mesoporous Mater., 200, 159, 10.1016/j.micromeso.2014.08.012

Pourebrahimi, 2015, Microporous Mesoporous Mater., 218, 144, 10.1016/j.micromeso.2015.07.013

Chakraborty, 2017, J. Mater. Chem. A, 5, 8423, 10.1039/C6TA09886J

Qian, 2012, ACS Appl. Mater. Interfaces, 4, 6125, 10.1021/am301772k

Tari, 2016, Microporous Mesoporous Mater., 231, 154, 10.1016/j.micromeso.2016.05.027

Gao, 2015, J. Mater. Chem. A, 3, 8091, 10.1039/C4TA06645F

Gupta, 2013, J. Phys. Chem. C, 117, 5792, 10.1021/jp312404k

Vicent-Luna, 2013, J. Phys. Chem. C, 117, 20762, 10.1021/jp407176j

Xiang, 2011, Angew. Chem., Int. Ed., 50, 491, 10.1002/anie.201004537

Yang, 2014, Dalton Trans., 43, 7028, 10.1039/c3dt53191k

Furukawa, 2014, J. Am. Chem. Soc., 136, 4369, 10.1021/ja500330a

Yuan, 2018, Adv. Mater., 1704303, 10.1002/adma.201704303

Zhang, 2014, J. Am. Chem. Soc., 136, 16978, 10.1021/ja509960n

Nguyen, 2010, J. Am. Chem. Soc., 132, 4560, 10.1021/ja100900c

Yang, 2012, Adv. Mater., 24, 4010, 10.1002/adma.201200790

Miralda, 2012, ACS Catal., 2, 180, 10.1021/cs200638h

Yang, 2012, Energy Environ. Sci., 5, 6465, 10.1039/C1EE02234B

Zhou, 2012, J. Mol. Catal. A: Chem., 361–362, 12, 10.1016/j.molcata.2012.04.008

Huang, 2014, Chem. Commun., 50, 2624, 10.1039/C3CC49187K

Ma, 2015, J. Mater. Chem. A, 3, 23136, 10.1039/C5TA07026K

Kuruppathparambil, 2016, Appl. Catal., B, 182, 562, 10.1016/j.apcatb.2015.10.005

Tharun, 2016, Green Chem., 18, 2479, 10.1039/C5GC02153G

Liang, 2017, Chem. Sci., 8, 1570, 10.1039/C6SC04357G

Liang, 2018, Chem. Commun., 54, 342, 10.1039/C7CC08630J

Zou, 2016, Small, 12, 2334, 10.1002/smll.201503741

Beyzavi, 2014, J. Am. Chem. Soc., 136, 15861, 10.1021/ja508626n

Gao, 2014, Angew. Chem., Int. Ed., 53, 2615, 10.1002/anie.201309778

Feng, 2013, J. Am. Chem. Soc., 135, 17105, 10.1021/ja408084j

Gao, 2014, Chem. Commun., 50, 5316, 10.1039/C3CC47542E

Zhang, 2018, Angew. Chem., Int. Ed., 57, 5095, 10.1002/anie.201802661

Lu, 2017, ACS Appl. Mater. Interfaces, 9, 39441, 10.1021/acsami.7b14179

Zhou, 2018, Chem. Commun., 54, 456, 10.1039/C7CC08473K

Kathalikkattil, 2014, Green Chem., 16, 1607, 10.1039/c3gc41833b

Liu, 2016, Inorg. Chem., 55, 3558, 10.1021/acs.inorgchem.6b00050

Wei, 2017, Appl. Catal., B, 219, 603, 10.1016/j.apcatb.2017.07.085

Wang, 2017, ACS Appl. Mater. Interfaces, 9, 17969, 10.1021/acsami.7b03835

Gao, 2017, Chem. Commun., 53, 1293, 10.1039/C6CC08773F

Zhu, 2018, J. Am. Chem. Soc., 140, 993, 10.1021/jacs.7b10643

He, 2018, Angew. Chem., Int. Ed., 57, 4657, 10.1002/anie.201801122

Zhou, 2015, J. Am. Chem. Soc., 137, 15066, 10.1021/jacs.5b07925

Kathalikkattil, 2016, Chem. Commun., 52, 280, 10.1039/C5CC07781H

Song, 2009, Green Chem., 11, 1031, 10.1039/b902550b

Guillerm, 2014, Nat. Chem., 6, 673, 10.1038/nchem.1982

Liu, 2015, J. Mater. Chem. A, 3, 21545, 10.1039/C5TA03680A

Kathalikkattil, 2015, J. Mater. Chem. A, 3, 22636, 10.1039/C5TA05688H

Babu, 2016, ACS Appl. Mater. Interfaces, 8, 33723, 10.1021/acsami.6b12458

Jiang, 2016, Chem. – Eur. J., 22, 16991, 10.1002/chem.201603465

Babu, 2016, Green Chem., 18, 232, 10.1039/C5GC01763G

Han, 2016, Green Chem., 18, 4086, 10.1039/C6GC00413J

Li, 2016, J. Am. Chem. Soc., 138, 2142, 10.1021/jacs.5b13335

Li, 2017, Chem. Commun., 53, 12970, 10.1039/C7CC08298C

Yao, 2017, ACS Appl. Mater. Interfaces, 9, 38919, 10.1021/acsami.7b12697

Wei, 2017, Chem. Commun., 53, 3224, 10.1039/C7CC00363C

Li, 2018, ACS Appl. Mater. Interfaces, 10, 10965, 10.1021/acsami.8b01291

Liu, 2018, ChemSusChem, 11, 2340, 10.1002/cssc.201800896

Sharma, 2017, Chem. Commun., 53, 13371, 10.1039/C7CC08315G

Guo, 2016, ACS Appl. Mater. Interfaces, 8, 31746, 10.1021/acsami.6b13928

Tang, 2018, J. Mater. Chem. A, 6, 2964, 10.1039/C7TA09082J

Li, 2017, Chem. Mater., 29, 9256, 10.1021/acs.chemmater.7b03183

Nguyen, 2018, ACS Appl. Mater. Interfaces, 10, 733, 10.1021/acsami.7b16163

Zalomaeva, 2013, J. Energy Chem., 22, 130, 10.1016/S2095-4956(13)60017-0

Han, 2015, Nat. Commun., 6, 10007, 10.1038/ncomms10007

Wang, 2018, Chem. Commun., 54, 1170, 10.1039/C7CC08844B

Xu, 2016, Adv. Sci., 3, 1600048, 10.1002/advs.201600048

Sharma, 2018, Chem. – Eur. J., 24, 16662, 10.1002/chem.201803842

Xiong, 2017, Chem. Commun., 53, 6013, 10.1039/C7CC01136A

Zhou, 2017, ACS Catal., 7, 2248, 10.1021/acscatal.6b03404

Zhang, 2018, ACS Catal., 8, 2519, 10.1021/acscatal.7b04189

Hou, 2019, Angew. Chem., Int. Ed., 58, 577, 10.1002/anie.201811506

Schaffner, 2010, Chem. Rev., 110, 4554, 10.1021/cr900393d

Shaikh, 1996, Chem. Rev., 96, 951, 10.1021/cr950067i

Yu, 2010, Proc. Natl. Acad. Sci. U. S. A., 107, 20184, 10.1073/pnas.1010962107

Manjolinho, 2012, ACS Catal., 2, 2014, 10.1021/cs300448v

Qiao, 2018, Mini-Rev. Org. Chem., 15, 283, 10.2174/1570193X15666180101150819

Liu, 2015, Angew. Chem., Int. Ed., 54, 988, 10.1002/anie.201409103

Zhu, 2017, Inorg. Chem., 56, 3414, 10.1021/acs.inorgchem.6b02855

Molla, 2016, J. Colloid Interface Sci., 477, 220, 10.1016/j.jcis.2016.05.037

Trivedi, 2016, New J. Chem., 40, 3109, 10.1039/C5NJ02630J

Sun, 2018, J. Mater. Chem. A, 6, 15371, 10.1039/C8TA04667K

Chen, 2017, Chem. Commun., 53, 10930, 10.1039/C7CC06522A

Liu, 2017, J. Energy Chem., 26, 821, 10.1016/j.jechem.2017.07.022

Ding, 2018, ACS Catal., 8, 3194, 10.1021/acscatal.7b03404

Aguila, 2018, Angew. Chem., Int. Ed., 57, 10107, 10.1002/anie.201803081

Kim, 2017, Adv. Funct. Mater., 27, 1700706, 10.1002/adfm.201700706

Yang, 2019, Angew. Chem., Int. Ed., 58, 3511, 10.1002/anie.201813494

Toyao, 2015, ChemSusChem, 8, 3905, 10.1002/cssc.201500780

Ding, 2017, ChemSusChem, 10, 1898, 10.1002/cssc.201700245

Zhu, 2018, J. Mater. Chem. A, 6, 22195, 10.1039/C8TA06383D

Meng, 2018, ChemSusChem, 11, 3751, 10.1002/cssc.201801585

Li, 2018, ACS Appl. Mater. Interfaces, 10, 36047, 10.1021/acsami.8b14118

Zhao, 2018, Inorg. Chem., 57, 2695, 10.1021/acs.inorgchem.7b03099

Zhao, 2017, ChemCatChem, 9, 4598, 10.1002/cctc.201701190

Wang, 2011, Chem. Soc. Rev., 40, 3703, 10.1039/c1cs15008a

Jessop, 2004, Coord. Chem. Rev., 248, 2425, 10.1016/j.ccr.2004.05.019

Goeppert, 2014, Chem. Soc. Rev., 43, 7995, 10.1039/C4CS00122B

Ye, 2015, ACS Catal., 5, 2921, 10.1021/acscatal.5b00396

Ye, 2015, ACS Catal., 5, 6219, 10.1021/acscatal.5b01191

Ye, 2016, Catal. Sci. Technol., 6, 8392, 10.1039/C6CY01245K

An, 2017, J. Am. Chem. Soc., 139, 17747, 10.1021/jacs.7b10922

Rungtaweevoranit, 2016, Nano Lett., 16, 7645, 10.1021/acs.nanolett.6b03637

Zhen, 2017, J. Catal., 348, 200, 10.1016/j.jcat.2017.02.031

Zhao, 2018, Catal. Sci. Technol., 8, 3160, 10.1039/C8CY00468D

Zhen, 2015, Chem. Commun., 51, 1728, 10.1039/C4CC08733J

Zhang, 2017, Small, 13, 1602583, 10.1002/smll.201602583

Zhao, 2018, ACS Appl. Mater. Interfaces, 10, 15096, 10.1021/acsami.8b03561

Hu, 2016, J. CO2 Util., 15, 89, 10.1016/j.jcou.2016.02.009

An, 2017, J. Am. Chem. Soc., 139, 3834, 10.1021/jacs.7b00058

Mon, 2018, Angew. Chem., Int. Ed., 57, 6186, 10.1002/anie.201801957

Li, 2018, J. Am. Chem. Soc., 140, 8082, 10.1021/jacs.8b04047

Lippi, 2017, J. Mater. Chem. A, 5, 12990, 10.1039/C7TA00958E

Yin, 2018, Appl. Catal., B, 234, 143, 10.1016/j.apcatb.2018.04.024

Zhang, 2017, Mater. Chem. Front., 1, 2405, 10.1039/C7QM00328E

Zhang, 2016, Adv. Mater., 28, 3703, 10.1002/adma.201505187

Li, 2017, ACS Sustainable Chem. Eng., 5, 7824, 10.1021/acssuschemeng.7b01306

Ramirez, 2018, ACS Catal., 8, 9174, 10.1021/acscatal.8b02892

Zhan, 2017, ACS Catal., 7, 7509, 10.1021/acscatal.7b01827

Li, 2018, ChemSusChem, 11, 1040, 10.1002/cssc.201800016

Li, 2014, Chem. Sci., 5, 3808, 10.1039/C4SC00940A

Liu, 2013, ACS Appl. Mater. Interfaces, 5, 7654, 10.1021/am4019675

Chen, 2018, Adv. Mater., 30, 1704388, 10.1002/adma.201704388

Fu, 2012, Angew. Chem., Int. Ed., 51, 3364, 10.1002/anie.201108357

Xu, 2015, J. Am. Chem. Soc., 137, 13440, 10.1021/jacs.5b08773

Yan, 2018, Nat. Commun., 9, 3353, 10.1038/s41467-018-05659-7

Sun, 2013, Chem. – Eur. J., 19, 14279, 10.1002/chem.201301728

Deng, 2018, Inorg. Chem., 57, 8276, 10.1021/acs.inorgchem.8b00896

Sun, 2015, Chem. Commun., 51, 2645, 10.1039/C4CC09797A

Wang, 2014, ACS Catal., 4, 4254, 10.1021/cs501169t

Chen, 2016, J. Mater. Chem. A, 4, 2657, 10.1039/C6TA00429F

Zhang, 2016, Angew. Chem., Int. Ed., 55, 14310, 10.1002/anie.201608597

Lee, 2015, Chem. Commun., 51, 16549, 10.1039/C5CC04506A

Lan, 2018, J. Am. Chem. Soc., 140, 12369, 10.1021/jacs.8b08357

Sun, 2015, Chem. Commun., 51, 2056, 10.1039/C4CC09407G

Lee, 2015, Chem. Commun., 51, 5735, 10.1039/C5CC00686D

Wang, 2014, Angew. Chem., Int. Ed., 53, 1034, 10.1002/anie.201309426

Fei, 2015, Inorg. Chem., 54, 6821, 10.1021/acs.inorgchem.5b00752

Wang, 2018, J. Am. Chem. Soc., 140, 38, 10.1021/jacs.7b10107

Zhao, 2017, J. Mater. Chem. A, 5, 12498, 10.1039/C7TA02611K

Kajiwara, 2016, Angew. Chem., Int. Ed., 55, 2697, 10.1002/anie.201508941

Liao, 2018, J. Mater. Chem. A, 6, 11337, 10.1039/C8TA02962H

Wang, 2018, J. Mater. Chem. A, 6, 4768, 10.1039/C8TA00154E

Qin, 2017, Appl. Catal., B, 209, 476, 10.1016/j.apcatb.2017.03.018

Chambers, 2015, ChemSusChem, 8, 603, 10.1002/cssc.201403345

Han, 2018, Angew. Chem., Int. Ed., 57, 16811, 10.1002/anie.201811545

Liu, 2013, J. Mater. Chem. A, 1, 11563, 10.1039/c3ta12433a

Li, 2014, Adv. Mater., 26, 4783, 10.1002/adma.201400428

Shi, 2015, Adv. Funct. Mater., 25, 5360, 10.1002/adfm.201502253

Xu, 2018, ACS Nano, 12, 5333, 10.1021/acsnano.8b00110

Chen, 2018, Chem. Sci., 9, 8890, 10.1039/C8SC02809E

Su, 2017, Appl. Catal., B, 200, 448, 10.1016/j.apcatb.2016.07.032

Wang, 2018, Appl. Catal., B, 228, 47, 10.1016/j.apcatb.2018.01.066

Crake, 2017, Appl. Catal., B, 210, 131, 10.1016/j.apcatb.2017.03.039

Sun, 2014, Chem. – Eur. J., 20, 4780, 10.1002/chem.201304067

Min Choi, 2017, J. Am. Chem. Soc., 139, 356, 10.1021/jacs.6b11027

Wang, 2014, Phys. Chem. Chem. Phys., 16, 14656, 10.1039/c4cp02173h

Wang, 2015, Appl. Catal., B, 162, 494, 10.1016/j.apcatb.2014.07.026

Yan, 2016, J. Mater. Chem. A, 4, 15126, 10.1039/C6TA04620G

Huang, 2018, J. CO2 Util., 24, 369, 10.1016/j.jcou.2018.01.024

He, 2018, J. Mater. Chem. A, 6, 932, 10.1039/C7TA09192C

Wang, 2016, Appl. Catal., B, 183, 47, 10.1016/j.apcatb.2015.10.037

Maina, 2017, ACS Appl. Mater. Interfaces, 9, 35010, 10.1021/acsami.7b11150

He, 2017, ACS Appl. Mater. Interfaces, 9, 9688, 10.1021/acsami.6b16817

Zhao, 2018, Catal. Sci. Technol., 8, 1288, 10.1039/C7CY02286G

Liu, 2017, Appl. Catal., B, 211, 1, 10.1016/j.apcatb.2017.04.009

Zhou, 2016, Nano Energy, 25, 128, 10.1016/j.nanoen.2016.04.049

Pipelzadeh, 2017, Appl. Catal., B, 218, 672, 10.1016/j.apcatb.2017.06.054

Liu, 2018, Adv. Mater. Interfaces, 1801062, 10.1002/admi.201801062

Sadeghi, 2018, J. Mater. Chem. A, 6, 18031, 10.1039/C8TA07158F

Khaletskaya, 2015, Chem. Mater., 27, 7248, 10.1021/acs.chemmater.5b03017

Wang, 2016, Nanoscale, 8, 6712, 10.1039/C5NR08747C

Wang, 2018, J. Am. Chem. Soc., 140, 5037, 10.1021/jacs.8b02200

Mu, 2018, J. Mater. Chem. A, 6, 21110, 10.1039/C8TA06151C

Hu, 2018, Chem. – Eur. J., 25, 379, 10.1002/chem.201804925

Wang, 2017, J. Am. Chem. Soc., 139, 17305, 10.1021/jacs.7b10733

Hinogami, 2012, ECS Electrochem. Lett., 1, H17, 10.1149/2.001204eel

Kumar, 2012, Electrochem. Commun., 25, 70, 10.1016/j.elecom.2012.09.018

Albo, 2017, ChemSusChem, 10, 1100, 10.1002/cssc.201600693

Perfecto-Irigaray, 2018, RSC Adv., 8, 21092, 10.1039/C8RA02676A

Nam, 2018, J. Am. Chem. Soc., 140, 11378, 10.1021/jacs.8b06407

Wu, 2019, Chem. Sci., 10, 2199, 10.1039/C8SC04344B

Kang, 2016, Chem. Sci., 7, 266, 10.1039/C5SC03291A

Jiang, 2018, Nano Energy, 52, 345, 10.1016/j.nanoen.2018.07.047

Kornienko, 2015, J. Am. Chem. Soc., 137, 14129, 10.1021/jacs.5b08212

Ye, 2016, J. Mater. Chem. A, 4, 15320, 10.1039/C6TA04801C

Hod, 2015, ACS Catal., 5, 6302, 10.1021/acscatal.5b01767

Wang, 2018, Nat. Commun., 9, 4466, 10.1038/s41467-018-06938-z

Qiu, 2018, ACS Appl. Mater. Interfaces, 10, 2480, 10.1021/acsami.7b15255

Kung, 2017, ACS Energy Lett., 2, 2394, 10.1021/acsenergylett.7b00621

Dong, 2018, ACS Appl. Energy Mater., 1, 4662, 10.1021/acsaem.8b00797

Zhao, 2017, ACS Appl. Mater. Interfaces, 9, 5302, 10.1021/acsami.6b15402

Wang, 2018, ACS Appl. Mater. Interfaces, 10, 14751, 10.1021/acsami.8b02226

Wang, 2018, Angew. Chem., Int. Ed., 57, 1944, 10.1002/anie.201712451

Pan, 2018, ACS Catal., 8, 3116, 10.1021/acscatal.8b00398

Zhao, 2017, J. Am. Chem. Soc., 139, 8078, 10.1021/jacs.7b02736

Ye, 2017, Nano Energy, 38, 281, 10.1016/j.nanoen.2017.05.042

Guo, 2017, J. Mater. Chem. A, 5, 24867, 10.1039/C7TA08431E

Sun, 2018, Angew. Chem., Int. Ed., 57, 2427, 10.1002/anie.201712221

Kim, 2013, Appl. Catal., A, 453, 175, 10.1016/j.apcata.2012.12.018