Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chất hấp thụ dựa trên carbon cho việc loại bỏ kim loại nặng từ dung dịch nước: sự không hợp lý và triển vọng tương lai - một bài tổng quan hiện trạng
Tóm tắt
Ô nhiễm kim loại nặng đang ảnh hưởng nghiêm trọng đến sức khỏe con người và môi trường. Những kim loại này được biết đến là tồn tại tự nhiên nhưng các hoạt động nhân tạo đã góp phần làm tăng nồng độ của chúng vượt quá giới hạn cho phép, điều này đã chứng minh là nguy hiểm đối với sức khỏe con người cũng như môi trường. Nhiều ngành công nghiệp xả thải nước thải chưa qua xử lý chứa kim loại nặng vào các dòng suối mở, từ đó tạo ra nguồn ô nhiễm ảnh hưởng tiêu cực đến người tiêu dùng. Để giải quyết vấn đề này, nhiều vật liệu đã được nghiên cứu và đề xuất làm chất hấp thụ để loại bỏ những ô nhiễm này. Trong số đó, các vật liệu dựa trên carbon đã cho thấy là lựa chọn hiệu quả, hiệu suất cao và thân thiện với môi trường cho việc hấp thụ kim loại nặng từ dung dịch nước. Bài viết tổng quan hiện nay tóm tắt một cách kỹ lưỡng những phát triển gần đây của các vật liệu dựa trên carbon, cụ thể là trong việc áp dụng chúng vào việc loại bỏ kim loại nặng từ dung dịch nước. Hơn nữa, bài viết giải thích cơ chế hấp thụ và so sánh nó với các công nghệ khác hiện có để loại bỏ kim loại. Tương tự, các thông số khác nhau ảnh hưởng đến quá trình hấp thụ sử dụng các vật liệu dựa trên carbon và các chiến lược tái sinh gần đây của chúng được trình bày. Cuối cùng, nhiều thiếu sót và mâu thuẫn liên quan đến các vật liệu dựa trên carbon được chỉ ra cùng với những triển vọng tương lai mà cần phải giải quyết trong các nghiên cứu sắp tới.
Từ khóa
#kim loại nặng #vật liệu dựa trên carbon #loại bỏ ô nhiễm #hấp thụ #công nghệ môi trườngTài liệu tham khảo
Burakov AE, Galunin EV, Burakova IV et al (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712
Tian H, Jiao L, Dong D (2019) Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-46924-z
Tang W, Shan B, Zhang H et al (2014) Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Sci Rep 4:1–7. https://doi.org/10.1038/srep07152
Wattigney WA, Irvin-Barnwell E, Li Z et al (2019) Biomonitoring programs in Michigan, Minnesota and New York to assess human exposure to Great Lakes contaminants. Int J Hyg Environ Health 222:125–135. https://doi.org/10.1016/j.ijheh.2018.08.012
Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 10:133–160
Verma R, Dwivedi P (2013) Heavy metal water pollution- a case study. Recent Res Sci Technol 5:98–99
Akinci G, Guven DE, Ugurlu SK (2013) Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals. Environ Sci Process Impacts 15:2252–2262. https://doi.org/10.1039/c3em00333g
Zuo J, Fan W, Wang X et al (2018) Trophic transfer of Cu, Zn, Cd, and Cr, and biomarker response for food webs in Taihu Lake, China. RSC Adv 8:3410–3417. https://doi.org/10.1039/c7ra11677b
Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37. https://doi.org/10.1016/j.jwpe.2020.101339
Methods SG-, 2015 undefined (2015) Methods of removing heavy metals from industrial wastewater. researchgate.net 1:2912–1309
Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418
Tang X, Zhou Y, Xu Y et al (2010) Sorption of polycyclic aromatic hydrocarbons from aqueous solution by hexadecyltrimethylammonium bromide modified fibric peat. J Chem Technol Biotechnol 85:1084–1091. https://doi.org/10.1002/jctb.2403
Zhou Y, Chen L, Lu P et al (2011) Removal of bisphenol A from aqueous solution using modified fibric peat as a novel biosorbent. Sep Purif Technol 81:184–190. https://doi.org/10.1016/j.seppur.2011.07.026
Zhou Y, Zhang R, Gu X, Lu J (2015) Adsorption of divalent heavy metal ions from aqueous solution by citric acid modified pine sawdust. Sep Sci Technol 50:245–252. https://doi.org/10.1080/01496395.2014.956223
Liu Q, Li Y, Chen H, et al (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:121040. https://doi.org/10.1016/j.jhazmat.2019.121040
Asere TG, Stevens CV, Du Laing G (2019) Use of (modified) natural adsorbents for arsenic remediation: a review. Sci Total Environ 676:706–720
Liu X, Ma R, Wang X et al (2019) Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut 252:62–73
Abdullah N, Yusof N, Lau WJ et al (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38
Wang X, Li X, Liu G et al (2019) Mixed heavy metal removal from wastewater by using discarded mushroom-stick biochar: adsorption properties and mechanisms. Environ Sci Process Impacts 21:584–592. https://doi.org/10.1039/c8em00457a
Sum JY, Ahmad AL, Ooi BS (2019) Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. J Ind Eng Chem 76:277–287. https://doi.org/10.1016/j.jiec.2019.03.052
Qi Y, Zhu L, Shen X et al (2019) Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes. Sep Purif Technol 222:117–124. https://doi.org/10.1016/j.seppur.2019.03.083
Liu Y, Fu R, Lou Z et al (2015) Preparation of functional carbon-based materials for removal of heavy metals from aqueous solution. Prog Chem 27:1665–1678
Krishna Kumar AS, Jiang SJ, Tseng WL (2015) Effective adsorption of chromium(vi)/Cr(iii) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057. https://doi.org/10.1039/c4ta06948j
Yang X, Wan Y, Zheng Y et al (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621
Wang L, Wang Y, Ma F et al (2019) Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ 668:1298–1309
Pakulski D, Czepa W, Witomska S et al (2018) Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. J Mater Chem A 6:9384–9390. https://doi.org/10.1039/c8ta01622d
Wang X, Li X, Wang J, Zhu H (2020) Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Wuji Cailiao Xuebao/Journal Inorg Mater 35:260–270. https://doi.org/10.15541/jim20190436
Dhaouadi F, Sellaoui L, Reynel-Ávila HE, et al. Adsorption mechanism of Zn 2+ , Ni 2+ , Cd 2+ , and Cu 2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. https://doi.org/10.1007/s11356-021-12832-x
Dzyazko YS, Volfkovich YM, Chaban MO (2021) Composites containing inorganic ion exchangers and graphene oxide: hydrophilic–hydrophobic and sorption properties (review). Springer Proc Phys 246:93–110. https://doi.org/10.1007/978-3-030-51905-6_8
Ma H, Yang J, Gao X et al (2019) Removal of chromium (VI) from water by porous carbon derived from corn straw: influencing factors, regeneration and mechanism. J Hazard Mater 369:550–560. https://doi.org/10.1016/j.jhazmat.2019.02.063
Ma YX, Shao WJ, Sun W et al (2018) One-step fabrication of β-cyclodextrin modified magnetic graphene oxide nanohybrids for adsorption of Pb(II), Cu(II) and methylene blue in aqueous solutions. Appl Surf Sci 459:544–553. https://doi.org/10.1016/j.apsusc.2018.08.025
Wang H, Liu YG, Zeng GM et al (2014) Grafting of β-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(VI) removal. Carbohydr Polym 113:166–173. https://doi.org/10.1016/j.carbpol.2014.07.014
Ahmad SZN, Wan Salleh WN, Ismail AF, et al (2020) Adsorptive removal of heavy metal ions using graphene-based nanomaterials: toxicity, roles of functional groups and mechanisms. Chemosphere 248:126008
Xu J, Cao Z, Zhang Y et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364
Li H, Dong X, da Silva EB et al (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478
Shang J, Zong M, Yu Y et al (2017) Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. J Environ Manage 197:331–337. https://doi.org/10.1016/j.jenvman.2017.03.085
Xie M, Zeng L, Zhang Q et al (2015) Synthesis and adsorption behavior of magnetic microspheres based on chitosan/organic rectorite for low-concentration heavy metal removal. J Alloys Compd 647:892–905. https://doi.org/10.1016/j.jallcom.2015.06.065
Mohan S, Kumar V, Singh DK, Hasan SH (2017) Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. J Environ Chem Eng 5:2259–2273. https://doi.org/10.1016/j.jece.2017.03.031
Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504
Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228. https://doi.org/10.1016/j.cej.2013.10.014
Hayati B, Maleki A, Najafi F et al (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336:146–157. https://doi.org/10.1016/j.jhazmat.2017.02.059
Gan M, Zheng Z, Sun S et al (2015) The influence of aluminum chloride on biosynthetic schwertmannite and Cu(ii)/Cr(vi) adsorption. RSC Adv 5:94500–94512. https://doi.org/10.1039/c5ra17316g
Park JH, Ok YS, Kim SH et al (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093
Tan P, Bi Q, Hu Y et al (2017) Effect of the degree of oxidation and defects of graphene oxide on adsorption of Cu 2+ from aqueous solution. Appl Surf Sci 423:1141–1151. https://doi.org/10.1016/j.apsusc.2017.06.304
Doumer ME, Rigol A, Vidal M, Mangrich AS (2016) Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environ Sci Pollut Res 23:2684–2692. https://doi.org/10.1007/s11356-015-5486-3
Fahmi AH, Samsuri AW, Jol H, Singh D (2018) Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. RSC Adv 8:38270–38280. https://doi.org/10.1039/c8ra06867d
Lai KC, Lee LY, Hiew BYZ et al (2019) Environmental application of three-dimensional graphene materials as adsorbents for dyes and heavy metals: review on ice-templating method and adsorption mechanisms. J Environ Sci (China) 79:174–199
Faheem BJ, Zheng H et al (2018) Adsorption-assisted decontamination of Hg(ii) from aqueous solution by multi-functionalized corncob-derived biochar. RSC Adv 8:38425–38435. https://doi.org/10.1039/c8ra06622a
Zhan W, Gao L, Fu X et al (2019) Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl Surf Sci 467–468:1122–1133. https://doi.org/10.1016/j.apsusc.2018.10.248
Deng Y, Huang S, Laird DA et al (2019) Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere 218:308–318. https://doi.org/10.1016/j.chemosphere.2018.11.081
Yu J, Jiang C, Guan Q et al (2018) Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 195:632–640. https://doi.org/10.1016/j.chemosphere.2017.12.128
Zhang F, Wang X, Yin D et al (2015) Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes). J Environ Manage 153:68–73. https://doi.org/10.1016/j.jenvman.2015.01.043
Ding Y, Liu Y, Liu S et al (2016) Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6:5223–5232. https://doi.org/10.1039/c5ra26248h
Das SK, Ghosh GK, Avasthe R (2021) Conversion of crop, weed and tree biomass into biochar for heavy metal removal and wastewater treatment. Biomass Convers Biorefinery 1–14. https://doi.org/10.1007/s13399-021-01334-y
Janiszewska D, Olchowski R, Nowicka A et al (2021) Activated biochars derived from wood biomass liquefaction residues for effective removal of hazardous hexavalent chromium from aquatic environments. GCB Bioenergy 00:1–13. https://doi.org/10.1111/gcbb.12839
Ho SH, Chen Y di, Yang Z kai, et al (2017) High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour Technol 246:142–149. https://doi.org/10.1016/j.biortech.2017.08.025
Ni BJ, Huang QS, Wang C et al (2019) Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219:351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053
Wang X, Xu J, Liu J, et al (2020) Mechanism of Cr(VI) removal by magnetic greigite/biochar composites. Sci Total Environ 700:134414. https://doi.org/10.1016/j.scitotenv.2019.134414
Saleh TA, Sari A, Tuzen M (2017) Optimization of parameters with experimental design for the adsorption of mercury using polyethylenimine modified-activated carbon. J Environ Chem Eng 5:1079–1088. https://doi.org/10.1016/j.jece.2017.01.032
Li J, Xing X, Li J et al (2018) Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water. Environ Pollut 234:677–683. https://doi.org/10.1016/j.envpol.2017.11.102
Agasti N (2021) Decontamination of heavy metal ions from water by composites prepared from waste. Curr Res Green Sustain Chem 4:100088. https://doi.org/10.1016/j.crgsc.2021.100088
Su Y-F, Cheng Y-L, Shih Y-H (2013) Removal of trichloroethylene by zerovalent iron/activated carbon derived from agricultural wastes. J Environ Manage 129:361–366. https://doi.org/10.1016/j.jenvman.2013.08.003
Wang C, Luo H, Zhang Z et al (2014) Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131. https://doi.org/10.1016/j.jhazmat.2014.01.009
Al-Gaashani R, Najjar A, Zakaria Y et al (2019) XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int 45:14439–14448. https://doi.org/10.1016/j.ceramint.2019.04.165
Wang W, Hu B, Wang C, et al (2020) Cr(VI) removal by micron-scale iron-carbon composite induced by ball milling: the role of activated carbon. ChemEng J 389:122633. https://doi.org/10.1016/j.cej.2019.122633
Xu H, Gao M, Hu X, et al. (2021) A novel preparation of S-nZVI and its high efficient removal of Cr(VI) in aqueous solution. J Hazard Mater 416:125924. https://doi.org/10.1016/j.jhazmat.2021.125924
Zhou Q, Liao B, Lin L et al (2018) Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci Total Environ 615:115–122. https://doi.org/10.1016/j.scitotenv.2017.09.220
Sarkar B, Mandal S, Tsang YF et al (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581
Fiyadh SS, AlSaadi MA, Jaafar WZ et al (2019) Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod 230:783–793
Sadegh H, Ali GAM, Makhlouf ASH et al (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353. https://doi.org/10.1016/j.molliq.2018.03.012
Wang Q, Chen L, Sun Y (2012) Removal of radiocobalt from aqueous solution by oxidized MWCNT. J Radioanal Nucl Chem 291:787–795. https://doi.org/10.1007/s10967-011-1352-z
Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416. https://doi.org/10.1016/j.jhazmat.2007.10.059
Bandaru NM, Reta N, Dalal H et al (2013) Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater 261:534–541. https://doi.org/10.1016/j.jhazmat.2013.07.076
Sun Y, Yang S, Sheng G et al (2012) The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. J Environ Radioact 105:40–47. https://doi.org/10.1016/j.jenvrad.2011.10.009
Tofighy MA, Mohammadi T (2011) Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater 185:140–147. https://doi.org/10.1016/j.jhazmat.2010.09.008
Chen C, Feng X, Yao S (2021) Ionic liquid-multi walled carbon nanotubes composite tablet for continuous adsorption of tetracyclines and heavy metals. J Clean Prod 286:124937. https://doi.org/10.1016/j.jclepro.2020.124937
Lin S, Zou C, Liang H, et al. (2021) The effective removal of nickel ions from aqueous solution onto magnetic multi-walled carbon nanotubes modified by β-cyclodextrin. Colloids Surfaces A PhysicochemEng Asp 619:126544. https://doi.org/10.1016/j.colsurfa.2021.126544
Smith AT, LaChance AM, Zeng S et al (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1:31–47. https://doi.org/10.1016/j.nanoms.2019.02.004
Bankole MT, Abdulkareem AS, Mohammed IA et al (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9:1–19. https://doi.org/10.1038/s41598-018-37899-4
Fan L, Zhou A, Zhong L et al (2019) Selective and effective adsorption of Hg(II) from aqueous solution over wide pH range by thiol functionalized magnetic carbon nanotubes. Chemosphere 226:405–412. https://doi.org/10.1016/j.chemosphere.2019.03.154
Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A (2019) Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J Environ Manage 246:547–556. https://doi.org/10.1016/j.jenvman.2019.05.117
Ren X, Li J, Chen C et al (2018) Graphene analogues in aquatic environments and porous media: dispersion, aggregation, deposition and transformation. Environ Sci Nano 5:1298–1340
Jiang W, Xin H, Li W (2016) Microcellular 3D graphene foam via chemical vapor deposition of electroless plated nickel foam templates. Mater Lett 162:105–109. https://doi.org/10.1016/j.matlet.2015.09.118
Singh RK, Kumar R, Singh DP et al (2019) Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review. Mater Today Chem 12:282–314
Chaika AN, Aristov VY, Molodtsova OV (2017) Graphene on cubic-SiC. Prog Mater Sci 89:1–30
Wang X-Y, Narita A, Müllen K (2018) Precision synthesis versus bulk-scale fabrication of graphenes. Nat Rev Chem 2:1–10. https://doi.org/10.1038/s41570-017-0100
Raghubanshi H, Ngobeni SM, Osikoya AO et al (2017) Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution. J Ind Eng Chem 47:169–178. https://doi.org/10.1016/j.jiec.2016.11.028
Jun BM, Kim S, Kim Y et al (2019) Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework. Chemosphere 231:82–92. https://doi.org/10.1016/j.chemosphere.2019.05.076
Lin Z, Weng X, Ma L et al (2019) Mechanistic insights into Pb(II) removal from aqueous solution by green reduced graphene oxide. J Colloid Interface Sci 550:1–9. https://doi.org/10.1016/j.jcis.2019.04.078
Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365
Samuel MS, Bhattacharya J, Raj S et al (2019) Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int J Biol Macromol 121:285–292. https://doi.org/10.1016/j.ijbiomac.2018.09.170
Li Y, Zhou Y, Zhou Y et al (2018) Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions. Water Sci Technol 78:2553–2563. https://doi.org/10.2166/wst.2019.009
Huang W, Hu Y, Li Y et al (2018) Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: the roles of cavity and surface functional groups. J Taiwan Inst Chem Eng 82:189–197. https://doi.org/10.1016/j.jtice.2017.11.021
Liu Q, Zhou Y, Lu J, Zhou Y (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043
Wang Y, Gu Y, Xie D et al (2019) A hierarchical hybrid monolith: MoS42–intercalated NiFe layered double hydroxide nanosheet arrays assembled on carbon foam for highly efficient heavy metal removal. J Mater Chem A 7:12869–12881. https://doi.org/10.1039/c9ta03102b
Zhao Y, Pan Y, Liu W, Zhang L (2015) Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chem Lett 44:758–760. https://doi.org/10.1246/cl.150137
Khan T, Isa MH, Ul Mustafa MR et al (2016) Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv 6:56365–56374. https://doi.org/10.1039/c6ra05618k
Tahir MU, Su X, Zhao M et al (2019) Preparation of hydroxypropyl-cyclodextrin-graphene / Fe 3 O 4 and its adsorption properties for heavy metals. Surfaces and Interfaces 16:43–49. https://doi.org/10.1016/j.surfin.2019.04.007
Wang H, Yuan X, Wu Y et al (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440. https://doi.org/10.1016/j.apsusc.2013.04.133
Liu J, Liu W, Wang Y et al (2016) A novel reusable nanocomposite adsorbent, xanthated Fe 3 O 4 -chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Appl Surf Sci 367:327–334. https://doi.org/10.1016/j.apsusc.2016.01.176
Zhou Y, He J, Lu J et al (2020) Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: degradation intermediates and toxicity evaluation. Chinese Chem Lett 31:2623–2626. https://doi.org/10.1016/j.cclet.2020.02.008