Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria

Trends in Plant Science - Tập 23 - Trang 1116-1130 - 2018
Cheng-Cai Zhang1,2, Cong-Zhao Zhou3, Robert L. Burnap4, Ling Peng5
1Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People’s Republic of China
2Aix-Marseille Université, CNRS, LCB, France
3School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People’s Republic of China
4Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
5Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France

Tài liệu tham khảo

Giordano, 2013, Homeostasis: an underestimated focal point of ecology and evolution, Plant Sci., 211, 92, 10.1016/j.plantsci.2013.07.008 Chellamuthu, 2013, From cyanobacteria to plants: conservation of PII functions during plastid evolution, Planta, 237, 451, 10.1007/s00425-012-1801-0 Herrero, 2004, Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria, FEMS Microbiol. Rev., 28, 469, 10.1016/j.femsre.2004.04.003 Burnap, 2015, Regulation of CO2 concentrating mechanism in cyanobacteria, Life, 5, 348, 10.3390/life5010348 Klähn, 2018, A glutamine riboswitch is a key element for the regulation of glutamine synthetase in cyanobacteria, Nucleic Acids Res., 10.1093/nar/gky709 Du, 2014, Characterisation of cyanobacterial bicarbonate transporters in E. coli shows that SbtA homologs are functional in this heterologous expression system, PLoS One, 9, 10.1371/journal.pone.0115905 Selim, 2018, PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response, Proc. Natl. Acad. Sci. U. S. A., 115, 4861, 10.1073/pnas.1803790115 Ponce-Toledo, 2017, An early-branching freshwater cyanobacterium at the origin of plastids, Curr. Biol., 27, 386, 10.1016/j.cub.2016.11.056 Rippka, 1979, Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 111, 1 Zhang, 1989, Molecular and genetical analysis of the fructose-glucose transport system in the cyanobacterium Synechocystis PCC6803, Mol. Microbiol., 3, 1221, 10.1111/j.1365-2958.1989.tb00272.x Bauwe, 2010, Photorespiration: players, partners and origin, Trends Plant Sci., 15, 330, 10.1016/j.tplants.2010.03.006 Moroney, 2013, Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions, Photosynth. Res., 117, 121, 10.1007/s11120-013-9865-7 Hagemann, 2016, Photorespiration and the potential to improve photosynthesis, Curr. Opin. Chem. Biol., 35, 109, 10.1016/j.cbpa.2016.09.014 Turmo, 2017, Carboxysomes: metabolic modules for CO2 fixation, FEMS Microbiol. Lett., 364, 10.1093/femsle/fnx176 Price, 2013, The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species, J. Exp. Bot., 64, 753, 10.1093/jxb/ers257 Young, 2011, Mapping photoautotrophic metabolism with isotopically non stationary 13C flux analysis, Metab. Eng., 13, 656, 10.1016/j.ymben.2011.08.002 Xiong, 2015, The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene, Nat. Plants, 1 Zhang, 2006, Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals, Mol. Microbiol., 59, 367, 10.1111/j.1365-2958.2005.04979.x Herrero, 2016, The multicellular nature of filamentous heterocyst-forming cyanobacteria, FEMS Microbiol. Rev., 40, 831, 10.1093/femsre/fuw029 Schneegurt, 2000, Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp strain ATCC 51142, heterotrophically grown in continuous dark, J. Phycol., 36, 107, 10.1046/j.1529-8817.2000.99152.x Muro-Pastor, 2005, Ammonium assimilation in cyanobacteria, Photosynth. Res., 83, 135, 10.1007/s11120-004-2082-7 Ohashi, 2011, Regulation of nitrate assimilation in cyanobacteria, J. Exp. Bot., 62, 1411, 10.1093/jxb/erq427 Shih, 2013, Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing, Proc. Natl. Acad. Sci. U. S. A., 110, 1053, 10.1073/pnas.1217107110 Reitzer, 2003, Nitrogen assimilation and global regulation in Escherichia coli, Annu. Rev. Microbiol., 57, 155, 10.1146/annurev.micro.57.030502.090820 Huergo, 2015, The emergence of 2-oxoglutarate as a master regulator metabolite, Microbiol. Mol. Biol. Rev., 79, 419, 10.1128/MMBR.00038-15 Fulda, 2006, Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803, Proteomics, 6, 2733, 10.1002/pmic.200500538 Stöckel, 2011, Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142, PLoS One, 6, 10.1371/journal.pone.0016680 Muro-Pastor, 2001, Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels, J. Biol. Chem., 276, 38320, 10.1074/jbc.M105297200 Laurent, 2005, Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120, Proc. Natl. Acad. Sci. U. S. A., 102, 9907, 10.1073/pnas.0502337102 Doucette, 2011, α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition, Nat. Chem. Biol., 7, 894, 10.1038/nchembio.685 He, 2004, Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors, Nature, 429, 188, 10.1038/nature02488 Haas, 2016, Intermediates of metabolism: from bystanders to signalling molecules, Trends Biochem. Sci., 41, 460, 10.1016/j.tibs.2016.02.003 You, 2013, Coordination of bacterial proteome with metabolism by cyclic AMP signalling, Nature, 500, 301, 10.1038/nature12446 Araujo, 2014, 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis, Front. Plant Sci., 5, 552 Uhrig, 2009, PII in higher plants: a modern role for an ancient protein, Trends Plant Sci., 14, 505, 10.1016/j.tplants.2009.07.003 Rabinowitz, 2013, Systems biology: metabolite turns master regulator, Nature, 500, 283, 10.1038/nature12544 Chen, 2006, Studying the signaling role of 2-oxoglutaric acid using analogs that mimic the ketone and ketal forms of 2-oxoglutaric acid, Chem. Biol., 13, 849, 10.1016/j.chembiol.2006.06.009 Liu, 2013, Structural requirements of 2-oxoglutaric acid analogues to mimic its signaling function, Org. Lett., 15, 4662, 10.1021/ol401914z Liu, 2011, 2-Difluoromethylene-4-methylenepentanoic acid, a paradoxical probe able to mimic the signaling role of 2-oxoglutaric acid in cyanobacteria, Org. Lett., 13, 2924, 10.1021/ol2009544 Wang, 2014, Mimicking the 2-oxoglutaric acid signalling function using molecular probes: insights from structural and functional investigations, Org. Biomol. Chem., 12, 4723, 10.1039/C4OB00630E Ziarelli, 2012, High resolution magic angle spinning NMR to investigate ligand-receptor binding events for mass-limited samples in liquids, J. Pharm. Biomed. Anal., 59, 13, 10.1016/j.jpba.2011.10.006 Chen, 2013, 19F NMR: a valuable tool for studying biological events, Chem. Soc. Rev., 42, 7971, 10.1039/c3cs60129c Zhao, 2010, Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate, Proc. Natl. Acad. Sci. U. S. A., 107, 12487, 10.1073/pnas.1001556107 Klähn, 2015, Integrated transcriptomic and metabolomic characterization of the low-carbon response using an ndhR mutant of Synechocystis sp. PCC 6803, Plant Physiol., 169, 1787, 10.1104/pp.114.254045 Wang, 2004, Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator, J. Biol. Chem., 279, 5739, 10.1074/jbc.M311336200 Jiang, 2018, Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR, Proc. Natl. Acad. Sci. U. S. A., 115, 403, 10.1073/pnas.1716062115 Haimovich-Dayan, 2015, Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803?, Environ. Microbiol., 17, 1794, 10.1111/1462-2920.12638 Daley, 2012, Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR, PLoS One, 7, 10.1371/journal.pone.0041286 Huergo, 2013, PII signal transduction proteins: nitrogen regulation and beyond, FEMS Microbiol. Rev., 37, 251, 10.1111/j.1574-6976.2012.00351.x Fokina, 2010, Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein, Proc. Natl. Acad. Sci. U. S. A., 107, 19760, 10.1073/pnas.1007653107 Espinosa, 2014, PipX, the coactivator of NtcA, is a global regulator in cyanobacteria, Proc. Natl. Acad. Sci U. S. A., 111, E2423, 10.1073/pnas.1404097111 Llácer, 2007, The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine, Proc. Natl. Acad. Sci. U. S. A., 104, 17644, 10.1073/pnas.0705987104 Maheswaran, 2004, Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942, J. Biol. Chem., 279, 55202, 10.1074/jbc.M410971200 Espinosa, 2006, Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA, Mol. Microbiol., 61, 457, 10.1111/j.1365-2958.2006.05231.x Wheatley, 2016, A PII-like protein regulated by bicarbonate: structural and biochemical studies of the carboxysome-associated CPII protein, J. Mol. Biol., 428, 4013, 10.1016/j.jmb.2016.07.015 Llácer, 2010, Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII, Proc. Natl. Acad. Sci. U. S. A., 107, 15397, 10.1073/pnas.1007015107 Tanigawa, 2002, Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro, Proc. Natl. Acad. Sci. U. S. A., 99, 4251, 10.1073/pnas.072587199 Li, 2003, An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120, Microbiology, 149, 3257, 10.1099/mic.0.26462-0 Eisenhut, 2008, The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants, Proc. Natl. Acad. Sci. U. S. A., 105, 17199, 10.1073/pnas.0807043105 Takahashi, 2004, Roles of CmpR, a LysR family transcriptional regulator, in acclimation of the cyanobacterium Synechococcus sp. strain PCC 7942 to low-CO2 and high-light conditions, Mol. Microbiol., 52, 837, 10.1111/j.1365-2958.2004.04021.x Lieman-Hurwitz, 2009, A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression, Environ. Microbiol., 11, 927, 10.1111/j.1462-2920.2008.01818.x Picossi, 2015, The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena, Environ. Microbiol., 17, 3341, 10.1111/1462-2920.12800 Nishimura, 2008, Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942, Mol. Microbiol., 68, 98, 10.1111/j.1365-2958.2008.06137.x Figge, 2001, Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress, Mol. Microbiol., 39, 455, 10.1046/j.1365-2958.2001.02239.x Woodger, 2007, Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacteriurn, Synechococcus sp. strain PCC 7002: role of NdhR/CcmR, J. Bacteriol., 189, 3335, 10.1128/JB.01745-06 Hackenberg, 2012, Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803, Microbiology, 158, 398, 10.1099/mic.0.054544-0 Stanier, 1977, Phototrophic prokaryotes: the cyanobacteria, Annu. Rev. Microbiol., 31, 225, 10.1146/annurev.mi.31.100177.001301 Conrad, 2014, Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 38, 254, 10.1111/1574-6976.12065 Berridge, 2003, Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol., 4, 517, 10.1038/nrm1155 Kaplan, 1999, CO2 concentrating mechanisms in microorganisms, Transport, 50, 539 Lopez-Igual, 2012, N and C control of ABC-type bicarbonate transporter Cmp and its LysR-type transcriptional regulator CmpR in a heterocyst-forming cyanobacterium, Anabaena sp, Environ. Microbiol., 14, 1035, 10.1111/j.1462-2920.2011.02683.x Giner-Lamia, 2017, Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803, Nucleic Acids Res., 45, 11800, 10.1093/nar/gkx860 Teramoto, 2018, Soft X-ray imaging of cellular carbon and nitrogen distributions in heterocystous cyanobacterium, Plant Physiol., 177, 52, 10.1104/pp.17.01767 Scanlan, 2009, Ecological genomics of marine picocyanobacteria, Microbiol. Mol. Biol. Rev., 73, 249, 10.1128/MMBR.00035-08 Domínguez-Martín, 2018, Differential NtcA responsiveness to 2-oxoglutarate underlies the diversity of C/N balance regulation in Prochlorococcus, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.02641 Domínguez-Martín, 2018, Distinct features of C/N balance regulation in Prochlorococcus sp. strain MIT9313, FEMS Microbiol. Lett., 365, 10.1093/femsle/fnx278 Wang, 2014, A “click” chemistry constructed affinity system for 2-oxoglutaric acid receptors and binding proteins, Org. Biomol. Chem., 12, 6470, 10.1039/C4OB01005A Seol, 1991, Escherichia coli kgtP encodes an α-ketoglutarate transporter, Proc. Natl. Acad. Sci. U. S. A., 88, 3802, 10.1073/pnas.88.9.3802 Chen, 2014, Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signalling molecule, FEBS J., 281, 1241, 10.1111/febs.12702 Zhang, 2013, Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor, Appl. Microbiol. Biotechnol., 97, 8307, 10.1007/s00253-013-5121-5 Lüddecke, 2017, PII protein-derived FRET sensors for quantification and live-cell imaging of 2-oxoglutarate, Sci. Rep., 7, 1, 10.1038/s41598-017-01440-w Lüddecke, 2013, From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII - NAGK complex formation, PLoS One, 8, 1, 10.1371/journal.pone.0083181 South, 2017, Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana, Plant Cell, 29, 808, 10.1105/tpc.16.00775 Gent, 2017, How do plants sense their nitrogen status?, J. Exp. Bot., 68, 2531, 10.1093/jxb/erx013 Timm, 2012, High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis, PLoS One, 7, 10.1371/journal.pone.0042809 Matthijs, 2017, The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum, EMBO J., 61, 316 Li, 2018, Modulating plant growth – metabolism coordination for sustainable agriculture, Nature, 560, 595, 10.1038/s41586-018-0415-5