Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production
Tóm tắt
Từ khóa
Tài liệu tham khảo
Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).
Marland, G. & Rotty, R. M. Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982. Tellus Ser. B-Chem. Phys. Meteorol. 36, 232–261 (1984).
Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. (Intergovernmental Panel on Climate Change, 1997).
Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories. Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).
Gregg, J. S., Andres, R. J. & Marland, G. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35, GL032887 (2008).
Andres, R. J., Boden, T. A. & Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus Ser. B-Chem. Phys. Meteorol. 66 (2014).
Fridley, D., Zheng, N. & Qin, Y. Inventory of China’s Energy-Related CO2 Emissions in 2008. (Lawrence Berkeley National Laboratory, 2011).
Andres, R. J., Gregg, J. S., Losey, L., Marland, G. & Boden, T. A. Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus Ser. B-Chem. Phys. Meteorol. 63, 309–327 (2011).
BP. Statistical Review of World Energy, https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (2020).
International Energy Agency (IEA). CO2 Emissions from Fuel Combustion 2019, https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019 (2019).
Hong, C. et al. Variations of China’s emission estimates: response to uncertainties in energy statistics. Atmos. Chem. Phys. 17, 1227–1239 (2017).
Crippa, M. et al. High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Sci. Data 7, 121 (2020).
Zhao, Y., Zhou, Y., Qiu, L. & Zhang, J. Quantifying the uncertainties of China’s emission inventory for industrial sources: From national to provincial and city scales. Atmos. Environ. 165, 207–221 (2017).
Andres, R. J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012).
Olivier, J. G., Janssens-Maenhout, G. & Peters, J. A. Trends in global CO2 emissions: 2013 report. Report No. 9279253816, (PBL Netherlands Environmental Assessment Agency, 2013).
Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).
Choudhury, A., Roy, J., Biswas, S., Chakraborty, C. & Sen, K. Determination of carbon dioxide emission factors from coal combustion. In Climate Change and India: Uncertainty Reduction in Greenhouse Gas Inventory Estimates (Universities Press, 2004).
Roy, J., Sarkar, P., Biswas, S. & Choudhury, A. Predictive equations for CO2 emission factors for coal combustion, their applicability in a thermal power plant and subsequent assessment of uncertainty in CO2 estimation. Fuel 88, 792–798 (2009).
Sarkar, P. et al. Revision of country specific NCVs and CEFs for all coal categories in Indian context and its impact on estimation of CO2 emission from coal combustion activities. Fuel 236, 461–467 (2019).
OlivierJ. G. J. & Peters, J. A. H. W. Trends in global CO2 and total greenhouse gas emissions; 2019 Report. (PBL Netherlands Environmental Assessment Agency, The Hague, 2019).
Andres, R. J., Boden, T. A. & Higdon, D. M. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmos. Chem. Phys. 16 (2016).
Asefi‐Najafabady, S. et al. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results. J. Geophys. Res.: Atmos. 119, 10,213–210,231 (2014).
Oda, T., Maksyutov, S. & Andres, R. J. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions. Earth Syst. Sci. Data 10, 87–107 (2018).
Gregg, J. S. & Andres, R. J. A method for estimating the temporal and spatial patterns of carbon dioxide emissions from national fossil-fuel consumption. Tellus Ser. B-Chem. Phys. Meteorol. 60, 1–10 (2008).
Cui, D., Deng, Z. & Liu, Z. China’s non-fossil fuel CO2 emissions from industrial processes. Appl. Energy 254, 113537 (2019).
Liu, Z., Ciais, P., Deng, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat Commun 11, 5172 (2020).
Crippa, M. et al. Fossil CO2 and GHG emissions of all world countries - 2019 Report. (Publications Office of the European Union, 2019).
National Bureau of Statistics. China Energy Statistical Yearbook. (China Statistical Press, 2019).
National Bureau of Statistics. Statistical Communiqué of the People’s Republic of China on the National Economic and Social Development, http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/ (2020).
Liu, Z., Zheng, B. & Zhang, Q. New dynamics of energy use and CO2 emissions in China. Preprint at https://arxiv.org/abs/1811.09475 (2018).
Korsbakken, J. I., Andrew, R. & Peters, G. Guest post: Why China’s CO2 emissions grew less than feared in 2019, https://www.carbonbrief.org/guest-post-why-chinas-co2-emissions-grew-less-than-feared-in-2019 (2020).
Ji-Cheng, H. & Yu-Qing, X. Estimation of the Aircraft CO2 Emissions of China’s Civil Aviation during 1960–2009. Adv. Clim. Chang. Res. 3, 99–105 (2012).
Turgut, E. T., Usanmaz, O. & Cavcar, M. The effect of flight distance on fuel mileage and CO2 per passenger kilometer. Inter. J. Sustain. Transp. 13, 224–234 (2019).
Graver, B., Zhang, K. & Rutherford, D. CO2 emissions from commercial aviation, 2018. (International Council on Clean Transportation, 2019).
International Air Transport Association (IATA). Slower but Steady Growth in 2019, https://www.iata.org/en/pressroom/pr/2020-02-06-01/ (2020).
Smith, T. W. P. et al. Third IMO Greenhouse Gas Study 2014. (International Maritime Organization, London, UK, 2015).
Olmer, N., Comer, B., Roy, B., Mao, X. & Rutherford, D. Greenhouse Gas Emissions From Global Shipping, 2013–2015. (International Council on Clean Transportation, 2017).
Kinsey, A. Coronavirus Intensifies Global Shipping Risks, https://www.maritime-executive.com/editorials/coronavirus-intensifies-global-shipping-risks (2020).
Spoladore, A., Borelli, D., Devia, F., Mora, F. & Schenone, C. Model for forecasting residential heat demand based on natural gas consumption and energy performance indicators. Appl. Energy 182, 488–499 (2016).
VDI. Berechnung der Kosten von Wärmeversorgungsanlagen (Economy calculation of heat consuming installations) (VID-Gesellschaft Bauen und Gebäudetechnik. 1988).
Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store https://cds.climate.copernicus.eu (2019).
Doxsey-Whitfield, E. et al. Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Appl. Geogr. 1, 226–234 (2015).