Carbon Dioxide Capture and Storage: Issues and Prospects

Annual Review of Environment and Resources - Tập 39 Số 1 - Trang 243-270 - 2014
Heleen de Coninck1, Sally M. Benson2
1Institute for Science, Innovation and Society, Faculty of Science, Radhoud University, 6500 GL Nijmegen, Netherlands;
2Department of Energy Resource Engineering, Stanford University, Stanford, California 94305;

Tóm tắt

Almost 20 years ago, the first CO2 capture and storage (CCS) project began injecting CO2 into a deep geological formation in an offshore aquifer. Relevant science has advanced in areas such as chemical engineering, geophysics, and social psychology. Governments have generously funded demonstrations. As a result, a handful of industrial-scale CCS projects are currently injecting about 15 megatons of CO2 underground annually that contribute to climate change mitigation. However, CCS is struggling to gain a foothold in the set of options for dealing with climate change. This review explores why and discusses critical conditions for CCS to emerge as a viable mitigation option. Explanations for this struggle include the absence of government action on climate change, economic crisis–induced low carbon prices, public skepticism, increasing costs, and advances in other options including renewables and shale gas. Climate change action is identified as a critical condition for progress in CCS, in addition to community support, safe storage, robust policy support, and favorable CCS market conditions.

Từ khóa


Tài liệu tham khảo

Metz B, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage

10.4337/9781849802222

10.1002/wcc.266

10.1007/BF00162777

10.1016/0016-2361(82)90064-3

10.1039/C3EE42350F

7. Dooley JJ, Dahowski RT, Davidson CL. 2010. CO2-driven enhanced oil recovery as a stepping stone to what? PNNL-19557 Rep., Pac. Northwest Natl. Lab., Richland, WA

10.1017/CBO9780511793677.019

10.1787/9789264108820-en

IEA, 2009, Technology Roadmap: Carbon Capture and Storage

11. Abellera C, Short C. 2011. The costs of CCS and other low-carbon technologies. Issues Brief No. 2, Glob. CCS Inst., Canberra, Aust. http://cdn.globalccsinstitute.com/sites/default/files/publications/24202/costs-ccs-and-other-low-carbon-technologies.pdf

12. Yanagisawa A. 2013. Impacts of shale gas revolution on natural gas and coal demand. IEEJ Work. Pap., Inst. Energy Econ. Jpn., Tokyo.http://eneken.ieej.or.jp/data/4687.pdf

Glob. CCS Inst, 2013, The Global Status of CCS: 2013.

14. Gale J, Bradshaw J, Chen Z, Garg A, Gomez D, et al. 2005. Sources of CO2. See Ref. 1, pp. 75–104

IEA/UNIDO, 2011, Technology Roadmap: Carbon Capture and Storage in Industrial Applications

16. IEAGHG. 2014. CO2pipeline infrastructure. Rep. 2013/18, Jan., IEAGHG, Cheltenham, UK.http://cdn.globalccsinstitute.com/sites/default/files/publications/120301/co2-pipeline-infrastructure.pdf

17. Yang A, Cui Y. 2012. Global coal risk assessment: data analysis and market research. Work. Pap., World Resour. Inst., Washington, DC.http://www.wri.org/publication/global-coal-risk-assessment

18. Thambimuthu K, Soltanieh M, Abanades JC, Allam R, Bolland O, et al. 2005. Capture of CO2. See Ref. 1, pp. 105–78

10.1007/978-1-4614-2215-0

10.1002/cssc.200800169

10.1016/S1750-5836(07)00094-1

10.1002/anie.201000431

10.1126/science.1176731

10.1016/j.ijggc.2009.09.016

10.1126/science.1152516

10.1021/jz1014828

27. Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, et al. 2011. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10(5):372–75

10.1039/b923053j

10.1039/c3cp53627k

10.1021/ef8010614

10.1016/j.ces.2009.01.055

10.1016/S1001-0742(08)60002-9

10.1046/j.1526-0984.1998.08014.x

34. Mazzotti M, Abanades JC, Allam R, Lackner KS, Meunier F, et al. 2005. Mineral carbonation and industrial uses of carbon dioxide. See Ref. 1, pp. 319–38

10.1016/j.jhazmat.2010.02.052

10.1016/j.cemconcomp.2012.11.010

10.1073/pnas.1012253108

38. ECRA. 2009. Development of state of the art-techniques in cement manufacturing: trying to look ahead. CSI/ECRA Technol. Pap., June 4, Dusseldorf, Ger./Geneva, Switz.

39. IEA UNIDO. 2010. Global technology roadmap for CCS in industry. Sectoral assessment: cement. Final Rep., Aug., prepared by D Barker, Mott MacDonald Ltd., Brighton, UK.http://decarboni.se/publications/global-technology-roadmap-ccs-industry-sectoral-assessment-cement

10.1016/j.ijggc.2013.01.048

41. UNIDO. 2010. Carbon capture and storage in industrial applications. Technol. Synth. Rep., Work. Pap., Nov., UNIDO, Vienna, Austria

10.1016/j.egypro.2009.01.209

10.1016/S1750-5836(07)00119-3

Glob. CCS Inst, 2012, The Global Status of CCS.

45. Heinrich J, Herzog H, Reiner D. 2004. Environmental assessment of geologic storage of CO2. MIT-LFEE 2003–002 Rep., Cambridge, MA.http://sequestration.mit.edu/pdf/LFEE_2003-002_RP.pdf

10.1016/j.jhazmat.2009.11.068

47. Herzog H, Smekens K, Dadhich P, Dooley J, Fujii Y, et al. 2005. Costs and economic potential. See Ref. 1, pp.339–62

48. DOE-NETL. 2011. Coal-fired power plants in the United States: examination of the costs of retrofitting with CO2capture technology, revision 3. DOE/NETL-402/102309 Rep., Jan. 4, Natl. Energy Technol. Lab., Washington, DC

49. DOE-NETL. 2011. Cost and performance baseline for fossil energy plants. Volume 3b: Low rank coal to electricity: combustion cases. Final Rep., DOE/NETL-2011/1463, March, Natl. Energy Technol. Lab., Washington, DC

10.1021/es204514f

51. Al-Juaied M, Whitemore A. 2009. Realistic costs of carbon capture. Belfer Cent. Discuss. Pap. 2009–08, Harvard Univ., Cambridge, MA

52. Bradshaw J, Dance T. 2005. Mapping geological storage prospectivity of CO2for the world's sedimentary basins and regional source to sink matching. Proc. 7th Int. Conf. Greenh. Gas Control Technol., Sept. 5–9, 2004, Vancouver, Can., ed. ES Rubin, DW Keith, CF Gilboy, pp. 583–92. Cheltenham, UK: IEA GHG

53. Holloway S, ed. 1996. The underground disposal of carbon dioxide. Final Rep. Joule 2 Proj. No. CT92-0031, Br. Geol. Surv., Keyworth, Nottingham, UK

10.1144/GSL.SP.2004.233.01.09

10.1029/2005WR004806

10.1038/nature07852

10.1017/S0022112005007494

10.2113/gselements.4.5.325

10.1016/j.ijggc.2009.12.011

10.1029/2011WR010859

10.1029/2012WR012286

62. Benson SM, Cook P, Anderson J, Bachu S, Nimir HB, et al. 2005. Underground geological storage. See Ref. 1, pp. 195–276

10.1029/2005JB004169

10.2113/gselements.4.5.333

10.1002/ghg.18

10.1080/10473289.2003.10466206

10.1016/S1750-5836(07)00086-2

Nat. Resour. Can., SENER, US Dep. Energy, 2012, North American Carbon Storage Atlas 2012

69. Vangkilde-Pedersen T, Kirk K, Vincki O, Neele F, Le Nindre Y-M, et al. 2009. Assessing European capacity for geological storage of carbon dioxide. Final Rep. D42, EU GeoCapacity Consort.http://www.geology.cz/geocapacity/publications/D42%20GeoCapacity%20Final%20Report-red.pdf

10.1016/S1750-5836(07)00027-8

10.1016/j.petrol.2009.11.002

10.1007/s11242-009-9420-3

10.1007/s11242-004-0670-9

10.1016/j.ijggc.2008.02.004

10.1073/pnas.1302156110

10.1073/pnas.1202473109

Cavanagh AJ, J. Petrol. Sci. Eng., 74, 107

10.1073/pnas.1115347109

10.1016/j.ijggc.2008.08.002

10.1016/j.ijggc.2012.01.001

81. Chadwick A, Smith D, Hodrien C, Hovorka S, Mackay E, et al. 2010. The realities of storing carbon dioxide—a response to CO2storage capacity issues raised by Ehlig-Economides & Economides. Nat. Preced. doi: 10.1038/npre.2010.4500.1.http://precedings.nature.com/documents/4500/version/1

10.1073/pnas.1215026109

10.1111/j.1365-246X.2012.05606.x

10.1016/j.ijggc.2013.11.001

10.1073/pnas.1311316110

10.1073/pnas.1207728109

Arts RJ, 2008, First Break, 26, 65

10.1190/1.3304827

10.1190/1.3167786

10.1306/eg.11210505011

10.1016/j.ijggc.2013.03.021

10.1073/pnas.1107255108

10.1007/s12665-012-1672-5

10.1016/j.egypro.2011.02.548

10.1016/j.ijggc.2010.03.003

10.1190/tle32101268.1

10.1190/geo2011-0515.1

10.1029/2009GL041544

10.1016/j.ijggc.2012.08.011

10.1190/1.3167786

10.1007/s12665-009-0400-2

10.1016/j.ijggc.2010.05.002

10.1007/s00254-004-1073-5

10.1016/B978-008044570-0/50157-4

10.1021/es021038+

10.1007/s00254-001-0497-4

107. Mikunda T, Haan-Kamminga A, van Engelenburg B. 2013. Legal and regulatory barriers to CCS projects in Europe. CATO2-WP4.1-D14 Rep., CATO2, Utrecht, Neth.

10.1016/j.gloenvcha.2011.01.009

10.21552/CCLR/2010/3/140

IEA, 2012, Carbon Capture and Storage: Legal and Regulatory Review, 3

111. Seligsohn D, Liu Y, Forbes S, Dogjie Z, West L. 2010. CCS in China: toward an environmental, health, and safety regulatory framework. WRI Issue Brief, World Resour. Inst., Washington, DC

10.1016/j.egypro.2013.06.721

10.1016/j.gloenvcha.2011.03.006

10.1016/j.enpol.2008.07.029

115. FutureGen Alliance. 2014. FutureGen 2.0 receives record of decision from U.S. Department of Energy. Community Corner, Jan.http://futuregenalliance.org/community-corner/2014/02

10.1080/14693062.2012.746070

10.1016/j.ijggc.2009.10.012

10.1016/j.ijggc.2008.09.001

10.1016/j.ijggc.2008.07.006

10.1016/j.ijggc.2012.02.017

10.1016/j.ijggc.2011.09.012

10.1016/j.ijggc.2008.07.009

10.1007/s11027-011-9353-3

Evar B, 2012, The Social Dynamics of Carbon Capture and Storage: Understanding CCS Representation, Governance and Innovation, 172

10.1177/0958305X9800900404

10.1016/j.ijggc.2008.04.003

10.1016/j.egypro.2009.02.265

128. IEA/CSLF. 2007. Near-term opportunities for carbon dioxide capture and storage. Summary Rep., Glob. Assess. Worksh., IEA, Paris

129. UNIDO. 2010. CCS roadmap for industry: high-purity CO2sources. Sectoral assessment. Final Draft Rep., prepared by P Zakkour, G Cook, Carbon Counts, London.http://decarboni.se/publications/ccs-roadmap-industry-high-purity-co2-sources-sectoral-assessment-final-draft-report

10.1016/j.egypro.2011.02.563

10.1021/es101441a

10.1029/2005JB004169

10.1007/s11027-011-9313-y

10.1787/energy_tech-2012-en