Carbohydrate-binding activities of coagulation factors fibrinogen and fibrin

Glycoconjugate Journal - Tập 32 - Trang 385-392 - 2015
Kimie Date1, Mami Ohyama1, Haruko Ogawa1
1Graduate School of Humanities and Sciences and Glycoscience Institute, Ochanomizu University, Bunkyo-ku, Japan

Tóm tắt

The coagulation factors fibrinogen and fibrin play important roles in the final stage of the blood coagulation cascade. It has not been revealed whether fibrinogen has lectin activity or not. Here we demonstrate that fibrinogen and fibrin have carbohydrate-specific binding activities that inhibit fibrin clot formation. A solid-phase binding study using sugar-biotinyl polymer probes revealed that fibrinogen has the highest affinity to mannose (Man) in both the presence and absence of 5 mM Ca2+. Fibrin, which is proteolytically produced from fibrinogen by thrombin, binds to the same sugar residues as fibrinogen in the presence of 5 mM Ca2+, while it markedly binds to N-acetylneuraminic acid in the absence of Ca2+. Thrombin-induced fibrin polymerization was monitored by turbidity at 350 nm. In the presence of Ca2+, Man and sugars having N-acetyl groups were found to inhibit the increase in turbidity, but only Man inhibited it in the absence of Ca2+. Scanning electron microscopy observation of fibrin clots formed in the presence of various sugars showed that fibrin fibers formed in the presence of Man and N-acetyl group sugars were thinner and more branched. In contrast, thrombin has neither carbohydrate-binding activity nor is affected by sugars. These results suggest that carbohydrates and glycoconjugates may regulate fibrin clot formation in vivo.

Tài liệu tham khảo

Mirshahi, M., Soria, J., Soria, C., Bertrand, O., Mirshahi, M., Basdevant, A.: Glycosylation of human fibrinogen and fibrin in vitro. Its consequences on the properties of fibrin(ogen). Thromb Res 48(3), 279–289 (1987) Yakovlev, S., Gorlatov, S., Ingham, K., Medved, L.: Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site. Biochemistry 42(25), 7709–7716 (2003). doi:10.1021/bi0344073 LeBoeuf, R.D., Raja, R.H., Fuller, G.M., Weigel, P.H.: Human fibrinogen specifically binds hyaluronic acid. J. Biol. Chem. 261(27), 12586–12592 (1986) Ryan, E.A., Mockros, L.F., Weisel, J.W., Lorand, L.: Structural origins of fibrin clot rheology. Biophys. J. 77(5), 2813–2826 (1999) Takekawa, H., Ina, C., Sato, R., Toma, K., Ogawa, H.: Novel carbohydrate-binding activity of pancreatic trypsins to N-linked glycans of glycoproteins. J. Biol. Chem. 281(13), 8528–8538 (2006). doi:10.1074/jbc.M513773200 Makogonenko, E., Tsurupa, G., Ingham, K., Medved, L.: Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site. Biochemistry 41(25), 7907–7913 (2002). doi:10.1021/bi025770x Niwa, K., Mimuro, J., Miyata, M., Sugo, T., Ohmori, T., Madoiwa, S., Tei, C., Sakata, Y.: Dysfibrinogen Kagoshima with the amino acid substitution gammaThr-314 to Ile: analyses of molecular abnormalities and thrombophilic nature of this abnormal molecule. Thromb. Res. 121(6), 773–780 (2008). doi:10.1016/j.thromres.2007.07.007 Akihama, S., Matsuda, Y., Fukase, T., Yamanaka, A., Okude, M.: Participation of sialic acid residue in the fibrinogen-fibrin conversion by thrombin. Yakugaku Zasshi 115(7), 537–542 (1995) Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970) Siebenlist, K.R., Mosesson, M.W., Hernandez, I., Bush, L.A., Di Cera, E., Shainoff, J.R., Di Orio, J.P., Stojanovic, L.: Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma’ chains. Blood 106(8), 2730–2736 (2005). doi:10.1182/blood-2005-01-0240 Cooper, A.V., Standeven, K.F., Ariens, R.A.: Fibrinogen gamma-chain splice variant gamma’ alters fibrin formation and structure. Blood 102(2), 535–540 (2003). doi:10.1182/blood-2002-10-3150 Ono, S.: Gene duplication, mutation load, and mammalian genetic regulatory systems. J. Med. Genet. 9(3), 254–263 (1972) Standeven, K.F., Ariens, R.A., Grant, P.J.: The molecular physiology and pathology of fibrin structure/function. Blood Rev. 19(5), 275–288 (2005). doi:10.1016/j.blre.2005.01.003 Weisel, J.W., Litvinov, R.I.: Mechanisms of fibrin polymerization and clinical implications. Blood 121(10), 1712–1719 (2013). doi:10.1182/blood-2012-09-306639 Okude, M., Yamanaka, A., Morimoto, Y., Akihama, S.: Sialic acid in fibrinogen: effects of sialic acid on fibrinogen-fibrin conversion by thrombin and properties of asialofibrin clot. Biol. Pharm. Bull. 16(5), 448–452 (1993) Boyer, M.H., Shainoff, J.R., Ratnoff, O.D.: Acceleration of fibrin polymerization by calcium ions. Blood 39(3), 382–387 (1972) Alton, G., Kjaergaard, S., Etchison, J.R., Skovby, F., Freeze, H.H.: Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med. 60(2), 127–133 (1997) Taguchi, T., Miwa, I., Mizutani, T., Nakajima, H., Fukumura, Y., Kobayashi, I., Yabuuchi, M., Miwa, I.: Determination of D-mannose in plasma by HPLC. Clin. Chem. 49(1), 181–183 (2003) Soedamah-Muthu, S.S., Chaturvedi, N., Pickup, J.C., Fuller, J.H., Group, E.P.C.S.: Relationship between plasma sialic acid and fibrinogen concentration and incident micro- and macrovascular complications in type 1 diabetes. The EURODIAB Prospective Complications Study (PCS). Diabetologia 51(3), 493–501 (2008). doi:10.1007/s00125-007-0905-8 Gray, E., Hogwood, J., Mulloy, B.: The anticoagulant and antithrombotic mechanisms of heparin. Handb. Exp. Pharmacol. (207), 43–61 (2012). doi:10.1007/978-3-642-23056-1_3 LeBoeuf, R.D., Gregg, R.R., Weigel, P.H., Fuller, G.M.: Effects of hyaluronic acid and other glycosaminoglycans on fibrin polymer formation. Biochemistry 26(19), 6052–6057 (1987) Kunicki, T.J.: Platelet membrane glycoproteins and their function: an overview. Blut 59(1), 30–34 (1989) Morris, T.A., Marsh, J.J., Chiles, P.G., Kim, N.H., Noskovack, K.J., Magana, M.M., Gruppo, R.A., Woods Jr., V.L.: Abnormally sialylated fibrinogen gamma-chains in a patient with chronic thromboembolic pulmonary hypertension. Thromb. Res. 119(2), 257–259 (2007). doi:10.1016/j.thromres.2006.02.010 Pieters, M., Covic, N., van der Westhuizen, F.H., Nagaswami, C., Baras, Y., Toit Loots, D., Jerling, J.C., Elgar, D., Edmondson, K.S., van Zyl, D.G., Rheeder, P., Weisel, J.W.: Glycaemic control improves fibrin network characteristics in type 2 diabetes - a purified fibrinogen model. Thromb. Haemost. 99(4), 691–700 (2008). doi:10.1160/TH07-11-0699