Capturing the dynamics of a two orifice silo with the μ ( I ) model and extensions
Tài liệu tham khảo
Cheng, 2018, Inter-orifice distance dependence of flow rate in a quasi-two-dimensional hopper with dual outlets, Powder Technol., 328, 7, 10.1016/j.powtec.2018.01.019
Fullard, 2019, The dynamics of granular flow from a silo with two symmetric openings, Proc. Roy. Soc. A, 475, 20180462, 10.1098/rspa.2018.0462
Melo, 2007, On drawbody shapes: from bergmark–roos to kinematic models, Int. J. Rock Mech. Min. Sci., 44, 77, 10.1016/j.ijrmms.2006.04.010
Melo, 2008, Kinematic model for quasi static granular displacements in block caving: Dilatancy effects on drawbody shapes, Int. J. Rock Mech. Min. Sci., 45, 248, 10.1016/j.ijrmms.2007.07.005
PA Cundall. A computer model for rock mass behavior using interactive graphics for the input and output of geometrical data. A Report Prepared under Contract Number DACW 45–74-C-006, for the Missouri River Division, 1974.
Zhang, 2016, Investigation of flow rate in a quasi-2d hopper with two symmetric outlets, Phys. Lett. A, 380, 1301, 10.1016/j.physleta.2016.01.046
MiDi, 2004, On dense granular flows, Eur. Phys. J. E, 14, 341, 10.1140/epje/i2003-10153-0
Jop, 2006, A constitutive law for dense granular flows, Nature, 441, 727, 10.1038/nature04801
Holyoake, 2012, High-speed granular chute flows, J. Fluid Mech., 710, 35, 10.1017/jfm.2012.331
Staron, 2012, The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra, Phys. Fluids, 24, 103301, 10.1063/1.4757390
Staron, 2014, Continuum simulation of the discharge of the granular silo, Eur. Phys. J. E, 37, 1, 10.1140/epje/i2014-14005-6
Z Zou, Pierre Ruyer, P-Y. Lagrée, Pascale Aussillous, Discharge of a silo through a lateral orifice: Role of the bottom inclination versus friction. Phys. Rev. E, 102(5):052902, 2020.
Fullard, 2019, Pierre-Yves Lagrée, Stéphane Popinet. Quantifying silo flow using mri velocimetry for testing granular flow models, Phys. Rev. Fluids, 4, 074302, 10.1103/PhysRevFluids.4.074302
Zhou, 2017, Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice, J. Fluid Mech., 829, 459, 10.1017/jfm.2017.543
Reynolds, 1885, Lvii. on the dilatancy of media composed of rigid particles in contact. with experimental illustrations, The London, Edinburgh, and Dublin Philos. Magaz. J. Sci., 20, 469, 10.1080/14786448508627791
Guilherme Salvador-Vieira, Lydie Staron, Stéphane Popinet, Stéphanie Deboeuf, Pierre-Yves Lagrée, Modeling flow arrest using a non-local rheology? in: EPJ Web of Conferences, volume 140, page 03045. EDP Sciences, 2017.
David L. Henann, Ken Kamrin, A predictive, size-dependent continuum model for dense granular flows, Proc. Natl. Acad. Sci., 110(17), 6730–6735, 2013.
Kamrin, 2012, Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., 108, 178301, 10.1103/PhysRevLett.108.178301
Bouzid, 2015, Non-local rheology in dense granular flows, Eur. Phys. J. E, 38, 1, 10.1140/epje/i2015-15125-1
Barker, 2015, Well-posed and ill-posed behaviour of the-rheology for granular flow, J. Fluid Mech., 779, 794, 10.1017/jfm.2015.412
Joris Heyman, 2017, Compressibility regularizes the μ (i)-rheology for dense granular flows, J. Fluid Mech., 830, 553, 10.1017/jfm.2017.612
Irvine, 2016, The effect of heaped and sloped powder layers on ejection times and the residence-time distribution of a conical mass-flow hopper, 175
Ronald Midgley Nedderman et al, 1992, volume 352
Jaehyuk Choi, Arshad Kudrolli, Martin Z. Bazant, Velocity profile of granular flows inside silos and hoppers, J. Phys.: Condensed Matter, 17(24):S2533, 2005.
Nedderman, 1979, A kinematic model for the flow of granular materials, Powder Technol., 22, 243, 10.1016/0032-5910(79)80030-3
Kenneth Norman Kamrin, 2008
Ken Kamrin, A hierarchy of granular continuum models: Why flowing grains are both simple and complex, in: EPJ Web of Conferences, volume 140, page 01007. EDP Sciences, 2017.
Popinet, 2003, Gerris: a tree-based adaptive solver for the incompressible euler equations in complex geometries, J. Comput. Phys., 190, 572, 10.1016/S0021-9991(03)00298-5
Lagrée, 2011, The granular column collapse as a continuum: validity of a two-dimensional navier–stokes model with a <texmath type=”inline”>mu </texmath> (i)-rheology, J. Fluid Mech., 686, 378, 10.1017/jfm.2011.335
Stéphane Popinet and collaborators. Basilisk. http://basilisk.fr, 2015.
López-Herrera, 2015, Electrokinetic effects in the breakup of electrified jets: A volume-of-fluid numerical study, Int. J. Multiph. Flow, 71, 14, 10.1016/j.ijmultiphaseflow.2014.12.005
P-P Cortet, Daniel Bonamy, François Daviaud, Olivier Dauchot, Bérengère Dubrulle, Mathieu Renouf, Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow, EPL (Europhys. Lett.), 88(1):14001, 2009.
J. Antoon Van Hooft, Stéphane Popinet, Chiel C. Van Heerwaarden, Steven J.A. Van der Linden, Stephan R. de Roode, Bas J.H. Van de Wiel, Towards adaptive grids for atmospheric boundary-layer simulations, Bound.-layer Meteorol., 167(3):421–443, 2018.
Zhou, 2016
Shafaei, 2016, Analytical study of friction coefficients of pomegranate seed as essential parameters in design of post-harvest equipment, Inform. Process. Agric., 3, 133
Andreotti, 2013
Thomas Barker, 2017, Well-posed continuum equations for granular flow with compressibility and μ (I)-rheology, Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 473, 20160846, 10.1098/rspa.2016.0846
Pailha, 2009, A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115, 10.1017/S0022112009007460
Bouchut, 2021, Dilatancy in dry granular flows with a compressible μ(I) rheology, J. Comput. Phys., 429, 110013, 10.1016/j.jcp.2020.110013
Hurley, 2015, Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates, Granular Matter, 17, 287, 10.1007/s10035-015-0564-2
Robinson, 2021, Evidence of a non-local ø(I) response. In EPJ Web of Conferences, EDP Sci., 249, page 03028
Pouliquen, 2009, A non-local rheology for dense granular flows, Philos. Trans. Royal Soc.A: Math., Phys. Eng. Sci., 367, 5091, 10.1098/rsta.2009.0171
Dorian Faroux, Kimiaki Washino, Takuya Tsuji, Toshitsugu Tanaka, Coupling non-local rheology and volume of fluid (vof) method: a finite volume method (fvm) implementation. In EPJ Web of Conferences, volume 249, page 03025. EDP Sciences, 2021.
Kamrin, 2019, Non-locality in granular flow: Phenomenology and modeling approaches, Front. Phys., 7, 116, 10.3389/fphy.2019.00116
Wim A. Beverloo, Hendrik Antonie Leniger, J. Van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci., 15(3-4):260–269, 1961.
Mankoc, 2007, The flow rate of granular materials through an orifice, Granular Matter, 9, 407, 10.1007/s10035-007-0062-2