Capturability-based Fuzzy Footstep Planner for a Biped Robot with Centroidal Compliance

Journal of Bionic Engineering - Tập 21 Số 1 - Trang 84-100 - 2024
Zihan Xu1, Qin Fang1, Yong Ren2, Chengju Liu1
1Robot and Artificial Intelligence Lab (RAIL), College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China
2Applied Technology College, Soochow University, Suzhou, 215000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kheddar, A., Caron, S., Gergondet, P., Comport, A., Tanguy, A., Ott, C., Henze, B., Mesesan, G., Englsberger, J., Roa, M. A., Wieber, P., Chaumette, F., Spindler, F., Oriolo, G., Lanari, L., Escande, A., Chappellet, K., Kanehiro, F., & Rabaté, P. (2019). Humanoid robots in aircraft manufacturing: The airbus use cases. IEEE Robotics & Automation Magazine, 26(4), 30–45. https://doi.org/10.1109/MRA.2019.2943395

Duan, H. L., Dao, J., Green, K., Apgar, T., Fern, A., & Hurst, J. (2021). Learning task space actions for bipedal locomotion. In 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 1276–1282. https://doi.org/10.1109/ICRA48506.2021.9561705

Stephens, B. J., & Atkeson, C. G. (2010). Push recovery by stepping for humanoid robots with force controlled joints. In 2010 10th IEEE-RAS International conference on humanoid robots, Nashville, USA, 52–59. https://doi.org/10.1109/ICHR.2010.5686288

Schuller, R., Mesesan, G., Englsberger, J., Lee, J., & Ott, C. (2021). Online centroidal angular momentum reference generation and motion optimization for humanoid push recovery. IEEE Robotics and Automation Letters, 6(3), 5689–5696. https://doi.org/10.1109/LRA.2021.3082023

Ferigo, D., Camoriano, R., Viceconte, P. M., Calandriello, D., Traversaro, S., Rosasco, L., & Pucci, D. (2021). On the emergence of whole-body strategies from humanoid robot push-recovery learning. IEEE Robotics and Automation Letters, 6(4), 8561–8568. https://doi.org/10.1109/LRA.2021.3076955

Zhu, H. B., Luo, M. Z., Mei, T., Zhao, J. H., Li, T., & Guo, F. Y. (2016). Energy-efficient bio-inspired gait planning and control for biped robot based on human locomotion analysis. Journal of Bionic Engineering, 13(2), 271–282. https://doi.org/10.1016/S1672-6529(16)60300-1

Zhou, C. X., Wang, X., Li, Z. B., & Tsagarakis, N. (2017). Overview of gait synthesis for the humanoid coman. Journal of Bionic Engineering, 14(1), 15–25. https://doi.org/10.1016/S1672-6529(16)60373-6

Kim, S., Hirota, K., Nozaki, T., & Murakami, T. (2018). Human motion analysis and its application to walking stabilization with COG and ZMP. IEEE Transactions on Industrial Informatics, 14(11), 5178–5186. https://doi.org/10.1109/TII.2018.2830341

Wang, Z. P., He, B., Zhou, Y. M., Yuan, T. T., Xu, S. L., & Shao, M. Z. (2018). An experimental analysis of stability in human walking. Journal of Bionic Engineering, 15(5), 827–838. https://doi.org/10.1007/s42235-018-0070-4

De Viragh, Y., Bjelonic, M., Bellicoso, C. D., Jenelten, F., & Hutter, M. (2019). Trajectory optimization for wheeled-legged quadrupedal robots using linearized zmp constraints. IEEE Robotics and Automation Letters, 4(2), 1633–1640. https://doi.org/10.1109/LRA.2019.2896721

Caron, S., Escande, A., Lanari, L., & Mallein, B. (2019). Capturability-based pattern generation for walking with variable height. IEEE Transactions on Robotics, 36(2), 517–536. https://doi.org/10.1109/TRO.2019.2923971

Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 200–207. https://doi.org/10.1109/ICHR.2006.321385

Englsberger, J., Ott, C., & Albu-Schäffer, A. (2015). Three-dimensional bipedal walking control based on divergent component of motion. IEEE Transactions on Robotics, 31(2), 355–368. https://doi.org/10.1109/TRO.2015.2405592

Nenchev, D. N., & Iizuka, R. (2021). Emergent humanoid robot motion synergies derived from the momentum equilibrium principle and the distribution of momentum. IEEE Transactions on Robotics, 38(1), 536–555. https://doi.org/10.1109/TRO.2021.3083195

Han, Y. H., & Cho, B. K. (2022). Slope walking of humanoid robot without IMU sensor on an unknown slope. Robotics and Autonomous Systems, 155, 104163. https://doi.org/10.1016/j.robot.2022.104163

Kajita, S., Morisawa, M., Miura, K., Nakaoka, S. I., Harada, K., Kaneko, K., Kanehiro, F., & Yokoi, K. (2010) Biped walking stabilization based on linear inverted pendulum tracking. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, China, 4489–4496. https://doi.org/10.1109/IROS.2010.5651082

Li, Q. Q., Meng, F., Yu, Z. G., Chen, X. C., & Huang, Q. (2021). Dynamic torso compliance control for standing and walking balance of position-controlled humanoid robots. IEEE/ASME Transactions on Mechatronics, 26(2), 679–688. https://doi.org/10.1109/TMECH.2021.3061825

Jiang, Z. H., Xu, J. F., Li, H., & Huang, Q. (2019). Stable parking control of a robot astronaut in a space station based on human dynamics. IEEE Transactions on Robotics, 36(2), 399–413. https://doi.org/10.1109/TRO.2019.2936302

Benallegue, M., Cisneros, R., Benallegue, A., Tanguy, A., Escande, A., Morisawa, M., & Kanehiro, F. (2021). On compliance and safety with torque-control for robots with high reduction gears and no joint-torque feedback. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 6262–6269. https://doi.org/10.1109/IROS51168.2021.9636081

Huang, Q., Dong, C. C., Yu, Z. G., Chen, X. C., Li, Q. Q., Chen, H. Z., & Liu, H. X. (2022). Resistant compliance control for biped robot inspired by humanlike behavior. IEEE/ASME Transactions on Mechatronics, 27(5), 3463–3473. https://doi.org/10.1109/TMECH.2021.3139332

Tsagarakis, N. G., Morfey, S., Cerda, G. M., Li, Z. B., & Caldwell, D. G. (2013). Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 673–678. https://doi.org/10.1109/ICRA.2013.6630645

Jin, M. L., Lee, J., & Tsagarakis, N. G. (2017). Model-free robust adaptive control of humanoid robots with flexible joints. IEEE Transactions on Industrial Electronics, 64(2), 1706–1715. https://doi.org/10.1109/TIE.2016.2588461

Spyrakos-Papastavridis, E., Caldwell, D. G., & Tsagarakis, N. G. (2016). Balance and impedance optimization control for compliant humanoid stepping. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 1349–1355. https://doi.org/10.1109/IROS.2016.7759222

Hirayama, K., Hirosawa, N., & Hyon, S. H. (2018, November). Passivity-based compliant walking on torque-controlled hydraulic biped robot. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 1–6. https://doi.org/10.1109/HUMANOIDS.2018.8624964

Makrini, I. E., Rodriguez-Guerrero, C., Lefeber, D., & Vanderborght, B. (2017). The variable boundary layer sliding mode control: A safe and performant control for compliant joint manipulators. IEEE Robotics and Automation Letters, 2(1), 187–192. https://doi.org/10.1109/LRA.2016.2587059

Kim, M., Kim, J. H., Kim, S., Sim, J., & Park, J. (2018). Disturbance observer based linear feedback controller for compliant motion of humanoid robot. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 403–410. https://doi.org/10.1109/ICRA.2018.8460618

Kim, M., Lim, D., & Park, J. (2019). Online walking pattern generation for humanoid robot with compliant motion control. In: 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 1417–1422. https://doi.org/10.1109/ICRA.2019.8794174

Abi-Farraj, F., Henze, B., Ott, C., Giordano, P. R., & Roa, M. A. (2019). Torque-based balancing for a humanoid robot performing high-force interaction tasks. IEEE Robotics and Automation Letters, 4(2), 2023–2030. https://doi.org/10.1109/LRA.2019.2898041

Yu, W., & Perrusquía, A. (2020). Simplified stable admittance control using end-effector orientations. International Journal of Social Robotics, 12(5), 1061–1073. https://doi.org/10.1007/s12369-019-00579-y

Caron, S., Kheddar, A., & Tempier, O. (2019). Stair climbing stabilization of the HRP-4 humanoid robot using whole-body admittance control. In 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 277–283. https://doi.org/10.1109/ICRA.2019.8794348

Li, Z. J., Huang, B., Ye, Z. F., Deng, M. D., & Yang, C. G. (2018). Physical human-robot interaction of a robotic exoskeleton by admittance control. IEEE Transactions on Industrial Electronics, 65(12), 9614–9624. https://doi.org/10.1109/TIE.2018.2821649

Khan, M. S., & Mandava, R. K. (2023). A review on gait generation of the biped robot on various terrains. Robotica, 41(6), 1888–1930. https://doi.org/10.1017/S0263574723000097

Taherkhorsandi, M., Mahmoodabadi, M. J., Talebipour, M., & Castillo-Villar, K. K. (2015). Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear dynamics, 79, 251–263. https://doi.org/10.1007/s11071-014-1661-1

Shamna, P., Priya, N., & Ahamed, K. S. (2017, April). Walking stability control of biped robot based on three mass with angular momentum model using predictive PID control. In 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 584–588. https://doi.org/10.1109/ICECA.2017.8212732

Mandava, R. K., & Vundavilli, P. R. (2019). An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms. Evolutionary Intelligence, 12, 33–48. https://doi.org/10.1007/s12065-018-0184-y

Juang, J. G. (2000). Fuzzy neural network approaches for robotic gait synthesis. IEEE Transactions on Systems, Man, and Cybernetics, Part B Cybernetics, 30(4), 594–601. https://doi.org/10.1109/3477.865178

Li, T. H. S., Su, Y. T., Lai, S. W., & Hu, J. J. (2010). Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 41(3), 736–748. https://doi.org/10.1109/TSMCB.2010.2089978

Wang, Y., Xue, X., & Chen, B. (2018). Matsuoka’s CPG with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Transactions on Cybernetics, 50(2), 613–626. https://doi.org/10.1109/TCYB.2018.2870145

Yao, C., Liu, C., Xia, L., Liu, M., & Chen, Q. (2022). Humanoid adaptive locomotion control through a bioinspired CPG-based controller. Robotica, 40(3), 762–779. https://doi.org/10.1017/S0263574721000795

Xie, Z. M., Clary, P., Dao, J., Morais, P., Hurst, J., & Panne, M. (2020, May). Learning locomotion skills for cassie: Iterative design and sim-to-real. In: Conference on Robot Learning (CoRL), Osaka, Japan, 317–329.

García, J., & Shafie, D. (2020). Teaching a humanoid robot to walk faster through Safe Reinforcement Learning. Engineering Applications of Artificial Intelligence, 88, 103360. https://doi.org/10.1016/j.engappai.2019.103360

Siekmann, J., Godse, Y., Fern, A., & Hurst, J. (2021, May). Sim-to-real learning of all common bipedal gaits via periodic reward composition. In 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 7309–7315. https://doi.org/10.1109/ICRA48506.2021.9561814

Wieber, P. B. (2006, December). Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 137–142. https://doi.org/10.1109/ICHR.2006.321375

Dimitrov, D., Wieber, P. B., Ferreau, H. J., & Diehl, M. (2008, May). On the implementation of model predictive control for on-line walking pattern generation. In: 2008 IEEE International Conference on Robotics and Automation, Pasadena, USA, 2685–2690. https://doi.org/10.1109/ROBOT.2008.4543617

Diedam, H., Dimitrov, D., Wieber, P. B., Mombaur, K., & Diehl, M. (2008, September). Online walking gait generation with adaptive foot positioning through linear model predictive control. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 1121–1126. https://doi.org/10.1109/IROS.2008.4651055

Scianca, N., De Simone, D., Lanari, L., & Oriolo, G. (2020). MPC for humanoid gait generation: Stability and feasibility. IEEE Transactions on Robotics, 36(4), 1171–1188. https://doi.org/10.1109/TRO.2019.2958483

Kamioka, T., Kaneko, H., Takenaka, T., & Yoshiike, T. (2018, May). Simultaneous optimization of ZMP and footsteps based on the analytical solution of divergent component of motion. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 1763–1770. https://doi.org/10.1109/ICRA.2018.8460572

Liu, C. J., Zhang, T., Liu, M., & Chen, Q. J. (2020). Active balance control of humanoid locomotion based on foot position compensation. Journal of Bionic Engineering, 17(1), 134–147. https://doi.org/10.1007/s42235-020-0011-x

Yang, S. P., Chen, H., Fu, Z., & Zhang, W. (2021, September). Force-feedback based whole-body stabilizer for position-controlled humanoid robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 7432–7439. https://doi.org/10.1109/IROS51168.2021.9636634

Caron, S. (2020, May). Biped stabilization by linear feedback of the variable-height inverted pendulum model. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 9782–9788. https://doi.org/10.1109/ICRA40945.2020.9196715

Pan, Y. N., Du, P. H., Xue, H., & Lam, H. K. (2020). Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Transactions on Fuzzy Systems, 29(8), 2388–2398. https://doi.org/10.1109/TFUZZ.2020.2999746

Hengst, B. (2014). Runswift walk2014 report robocup standard platform league. Technical report. The University of New South Wales. https://cgi.cse.unsw.edu.au/~robocup/2014ChampionTeamPaperReports/20140930-Bernhard.Hengst-Walk2014Report.pdf

Diehl, M., Ferreau, H. J., & Haverbeke, N. (2009). Efficient numerical methods for nonlinear MPC and moving horizon estimation. Nonlinear model predictive control: towards new challenging applications. https://doi.org/10.1007/978-3-642-01094-1_32

Camacho, E. F., & Alba, C. B. (2013). Model predictive control. Springer science & business media.