Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra
Tóm tắt
Từ khóa
Tài liệu tham khảo
Languang, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Source. 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060. (ISSN 0378-7753)
Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Source 405, 18–29 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.019. (ISSN 0378-7753)
Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Source. 134(2), 277–292 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.033. (ISSN 0378-7753)
Merwe, R., Wan, E., Julier, S.: Sigma-point kalman filters for nonlinear estimation and sensor-fusion–applications to integrated navigation. Proc. AIAA Guid. Navig. Control Conf. (2004). https://doi.org/10.2514/6.2004-5120
Plett, G.L.: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation. J. Power Source. 161(2), 1369–1384 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.004. (ISSN 0378-7753)
Chao, Hu., Youn, B.D., Chung, J.: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl. Energy 92, 694–704 (2012). https://doi.org/10.1016/j.apenergy.2011.08.002
Zou, Y., Xiaosong, Hu., Ma, H., Li, S.E.: Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Source. 273, 793–803 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.146
Zhang, F., Liu, G., Fang, L.: Battery state estimation using Unscented Kalman Filter. IEEE Int. Conf. Robot. Autom. 2009, 1863–1868 (2009). https://doi.org/10.1109/ROBOT.2009.5152745
Chen, C., Xiong, R., Shen, W.: A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation. IEEE Trans. Power Electron. 33(1), 332–342 (2018). https://doi.org/10.1109/TPEL.2017.2670081
Olivares, B.E., Cerda Munoz, M.A., Orchard, M.E., Silva, J.F.: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans. Instrum. Measure. 62(2), 364–376 (2013). https://doi.org/10.1109/TIM.2012.2215142
Moura, S.J., Chaturvedi, N.A., Krstić, M.: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. ASME. J. Dyn. Syst. Meas. Control. 136(1), 011015 (2013). https://doi.org/10.1115/1.4024801
Bartlett, A., Marcicki, J., Onori, S., Rizzoni, G., Yang, X.G., Miller, T.: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Trans. Control Syst. Technol. 24(2), 384–399 (2016). https://doi.org/10.1109/TCST.2015.2446947
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Wang, Q., Kang, J., Tan, Z., Luo, M.: An online method to simultaneously identify the parameters and estimate states for lithium ion batteries. Electrochim. Acta 289, 376–388 (2018)
Xiong, R., Sun, F., Chen, Z., He, H.: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl. Energy 113, 463–476 (2014). https://doi.org/10.1016/j.apenergy.2013.07.061. (ISSN 0306-2619)
Tran, N.-T., Khan, A.B., Choi, W.: State of charge and state of health estimation of AGM VRLA batteries by employing a dual extended Kalman filter and an ARX model for online parameter estimation. Energies 10, 137 (2017). https://doi.org/10.3390/en10010137
Kim, J., Cho, B.H.: State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans. Veh. Technol. 60(9), 4249–4260 (2011)
Riviere, E., Sari, A., Venet, P., Meniere, F., Bultel, Y.: Innovative incremental capacity analysis implementation for C/LiFePO4 cell state-of-health estimation in electrical vehicles. Batteries 5, 37 (2019)
He, J., Wei, Z., Bian, X., Yan, F.: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model. IEEE Trans. Transp. Electrific. 6(2), 417–426 (2020). https://doi.org/10.1109/TTE.2020.2994543
Ruan, H., He, H., Wei, Z., Quan, Z., Li, Y.: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction. IEEE J. Emerg. Select. Top. Power Electron. (2021). https://doi.org/10.1109/JESTPE.2021.3098836
Bian, X., Wei, Z., Li, W., Pou, J., Sauer, D.U., Liu, L.: State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis. IEEE Trans. Power Electron. 37(2), 2226–2236 (2022). https://doi.org/10.1109/TPEL.2021.3104723
Yang, D., Zhang, X., Pan, R., Wang, Y., Chen, Z.: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Source. 384, 387–395 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.015
Chao, H., Jain, G., Schmidt, C., Strief, C., Sullivan, M.: Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J. Power Source 289, 105–113 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.166. (ISSN 0378-7753)
Ahmad, A.: Nearest neighbor based seismic attribute selection for effective porosity prediction. (2014). https://doi.org/10.3997/2214-4609.20141206.
Chao, H., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., Gorka, T.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49–55 (2014). https://doi.org/10.1016/j.apenergy.2014.04.077. (ISSN 0306-2619)
You, G., Park, S., Dukjin, O.: Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach. Appl. Energy 176, 92–103 (2016). https://doi.org/10.1016/j.apenergy.2016.05.051. (ISSN 03062619)
Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., Vinassa, J.-M.: Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electric. Power Energy Syst. 42(1), 487–494 (2012). https://doi.org/10.1016/j.ijepes.2012.04.050. (ISSN 0142-0615)
Lin, H., Liang, T., Chen, S.: Estimation of battery state of health using probabilistic neural network. IEEE Trans. Industr. Inf. 9(2), 679–685 (2013). https://doi.org/10.1109/TII.2012.2222650
Bai, G., Wang, P., Hu, C., Pecht, M.: A generic model-free approach for lithium-ion battery health management. App. Energy 135(C), 247–260 (2014). (Elsevier)
Kang, L.W., Zhao, X., Ma, J.: A new neural network model for the state-of-charge estimation in the battery degradation process. Appl. Energy 121, 20–27 (2014). https://doi.org/10.1016/j.apenergy.2014.01.066. (ISSN 0306-2619)
Zhang, S., Zhai, B., Guo, X., Wang, K., Peng, N., Zhang, X.: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. J. Energy Storage 26, 100951 (2019). https://doi.org/10.1016/j.est.2019.100951. (ISSN2352-152X)