Canonical computations of cerebral cortex

Current Opinion in Neurobiology - Tập 37 - Trang 75-84 - 2016
Kenneth D Miller1
1Center for Theoretical Neuroscience, Department of Neuroscience, Swartz Program in Theoretical Neuroscience, Kavli Institute for Brain Science, College of Physicians and Surgeons, Columbia University, New York, NY 10032-2695, United States

Tài liệu tham khảo

Barbas, 2015, General cortical and special prefrontal connections: principles from structure to function, Annu Rev Neurosci, 38, 269, 10.1146/annurev-neuro-071714-033936 Bernard, 2012, Transcriptional architecture of the primate neocortex, Neuron, 73, 1083, 10.1016/j.neuron.2012.03.002 Charvet, 2015, Systematic, cross-cortex variation in neuron numbers in rodents and primates, Cereb Cortex, 25, 147, 10.1093/cercor/bht214 DeFelipe, 2002, Microstructure of the neocortex: comparative aspects, J Neurocytol, 31, 299, 10.1023/A:1024130211265 Herculano-Houzel, 2008, The basic nonuniformity of the cerebral cortex, Proc Natl Acad Sci U S A, 105, 12593, 10.1073/pnas.0805417105 Hutsler, 2005, Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species, Brain Res, 1052, 71, 10.1016/j.brainres.2005.06.015 Krubitzer, 2009, In search of a unifying theory of complex brain evolution, Ann N Y Acad Sci, 1156, 44, 10.1111/j.1749-6632.2009.04421.x Srinivasan, 2015, Predicting visual acuity from the structure of visual cortex, Proc Natl Acad Sci U S A, 112, 7815, 10.1073/pnas.1509282112 Ventura-Antunes, 2013, Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains, Front Neuroanat, 7, 3, 10.3389/fnana.2013.00003 Carlo, 2013, Structural uniformity of neocortex, revisited, Proc Natl Acad Sci U S A, 110, 1488, 10.1073/pnas.1221398110 Harris, 2015, The neocortical circuit: themes and variations, Nat Neurosci, 18, 170, 10.1038/nn.3917 Jones, 2000, Microcolumns in the cerebral cortex, Proc Natl Acad Sci U S A, 97, 5019, 10.1073/pnas.97.10.5019 Molnar, 2014, Evolution and development of the mammalian cerebral cortex, Brain Behav Evol, 83, 126, 10.1159/000357753 Rakic, 2008, Confusing cortical columns, Proc Natl Acad Sci U S A, 105, 12099, 10.1073/pnas.0807271105 Jiang, 2015, Principles of connectivity among morphologically defined cell types in adult neocortex, Science, 350, aac9462, 10.1126/science.aac9462 Hubel, 1977, Ferrier lecture: functional architecture of macaque monkey visual cortex, Proc R Soc Lond B, 198, 1, 10.1098/rspb.1977.0085 Mountcastle, 1998 Hofman, 1989, On the evolution and geometry of the brain in mammals, Prog Neurobiol, 32, 137, 10.1016/0301-0082(89)90013-0 Felleman, 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb Cortex, 1, 1, 10.1093/cercor/1.1.1 Callaway, 1998, Local circuits in primary visual cortex of the macaque monkey, Ann Rev Neurosci, 21, 47, 10.1146/annurev.neuro.21.1.47 Constantinople, 2013, Deep cortical layers are activated directly by thalamus, Science, 340, 1591, 10.1126/science.1236425 Pluta, 2015, A direct translaminar inhibitory circuit tunes cortical output, Nat Neurosci, 18, 1631, 10.1038/nn.4123 Sherman, 2011, Distinct functions for direct and transthalamic corticocortical connections, J Neurophysiol, 106, 1068, 10.1152/jn.00429.2011 Kim, 2015, Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function, Neuron, 88, 1253, 10.1016/j.neuron.2015.11.002 Velez-Fort, 2014, The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing, Neuron, 83, 1431, 10.1016/j.neuron.2014.08.001 Fu, 2014, A cortical circuit for gain control by behavioral state, Cell, 156, 1139, 10.1016/j.cell.2014.01.050 Pi, 2013, Cortical interneurons that specialize in disinhibitory control, Nature, 503, 521, 10.1038/nature12676 Lee, 2013, A disinhibitory circuit mediates motor integration in the somatosensory cortex, Nat Neurosci, 16, 1662, 10.1038/nn.3544 Polack, 2013, Cellular mechanisms of brain state-dependent gain modulation in visual cortex, Nat Neurosci, 16, 1331, 10.1038/nn.3464 Fu, 2015, A cortical disinhibitory circuit for enhancing adult plasticity, Elife, 4, e05558, 10.7554/eLife.05558 Zhang, 2014, Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing, Science, 345, 660, 10.1126/science.1254126 Jiang, 2013, The organization of two new cortical interneuronal circuits, Nat Neurosci, 16, 210, 10.1038/nn.3305 Bortone, 2014, Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex, Neuron, 82, 474, 10.1016/j.neuron.2014.02.021 Hangya, 2014, From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons, Curr Opin Neurobiol, 26, 117, 10.1016/j.conb.2014.01.007 Pfeffer, 2013, Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons, Nat Neurosci, 16, 1068, 10.1038/nn.3446 Douglas, 1989, A canonical microcircuit for neocortex, Neural Comput, 1, 480, 10.1162/neco.1989.1.4.480 Carandini, 2012, Normalization as a canonical neural computation, Nat Rev Neurosci, 13, 51, 10.1038/nrn3136 Roe, 1990, A map of visual space induced in primary auditory cortex, Science, 250, 818, 10.1126/science.2237432 LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Yamins, 2014, Performance-optimized hierarchical models predict neural responses in higher visual cortex, Proc Natl Acad Sci U S A, 111, 8619, 10.1073/pnas.1403112111 DiCarlo, 2012, How does the brain solve visual object recognition?, Neuron, 73, 415, 10.1016/j.neuron.2012.01.010 Badre, 2008, Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes, Trends Cogn Sci (Regul Ed), 12, 193, 10.1016/j.tics.2008.02.004 Badre, 2009, Is the rostro-caudal axis of the frontal lobe hierarchical?, Nat Rev Neurosci, 10, 659, 10.1038/nrn2667 Cavanaugh, 2002, Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons, J Neurophysiol, 88, 2530, 10.1152/jn.00692.2001 Reynolds, 2009, The normalization model of attention, Neuron, 61, 168, 10.1016/j.neuron.2009.01.002 Martinez-Trujillo, 2004, Feature-based attention increases the selectivity of population responses in primate visual cortex, Curr Biol, 14, 744, 10.1016/j.cub.2004.04.028 Teich, 2010, V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening, Vis Neurosci, 27, 57, 10.1017/S0952523810000039 Crook, 1998, Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques, Eur J Neurosci, 10, 2056, 10.1046/j.1460-9568.1998.00218.x Ferster, 1996, Orientation selectivity of thalamic input to simple cells of cat visual cortex, Nature, 380, 249, 10.1038/380249a0 Chung, 1998, Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression, Neuron, 20, 1177, 10.1016/S0896-6273(00)80498-5 Finn, 2007, The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex, Neuron, 54, 137, 10.1016/j.neuron.2007.02.029 Lien, 2013, Tuned thalamic excitation is amplified by visual cortical circuits, Nat Neurosci, 16, 1315, 10.1038/nn.3488 Li, 2013, Linear transformation of thalamocortical input by intracortical excitation, Nat Neurosci, 16, 1324, 10.1038/nn.3494 Li, 2013, Intracortical multiplication of thalamocortical signals in mouse auditory cortex, Nat Neurosci, 16, 1179, 10.1038/nn.3493 Bruno, 2002, Feedforward mechanisms of excitatory and inhibitory cortical receptive fields, J Neurosci, 22, 10966, 10.1523/JNEUROSCI.22-24-10966.2002 Bruno, 2006, Cortex is driven by weak but synchronously active thalamocortical synapses, Science, 312, 1622, 10.1126/science.1124593 Priebe, 2012, Mechanisms of neuronal computation in mammalian visual cortex, Neuron, 75, 194, 10.1016/j.neuron.2012.06.011 Li, 2006, Origins of cross-orientation suppression in the visual cortex, J Neurophysiol, 96, 1755, 10.1152/jn.00425.2006 Lauritzen, 2001, Local correlation-based circuitry can account for responses to multi-grating stimuli in a model of cat V1, J Neurophysiol, 86, 1803, 10.1152/jn.2001.86.4.1803 Kayser, 2001, Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning, J Neurophysiol, 85, 2130, 10.1152/jn.2001.85.5.2130 Troyer, 1998, Contrast-invariant orientation tuning in cat visual cortex: feedforward tuning and correlation-based intracortical connectivity, J Neurosci, 18, 5908, 10.1523/JNEUROSCI.18-15-05908.1998 Wimbauer, 1997, Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis, Biol Cybern, 77, 463, 10.1007/s004220050406 Hubel, 1962, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J Physiol, 160, 106, 10.1113/jphysiol.1962.sp006837 Reid, 1995, Specificity of monosynaptic connections from thalamus to visual cortex, Nature, 378, 281, 10.1038/378281a0 Piscopo, 2013, Diverse visual features encoded in mouse lateral geniculate nucleus, J Neurosci, 33, 4642, 10.1523/JNEUROSCI.5187-12.2013 Scholl, 2013, Emergence of orientation selectivity in the mammalian visual pathway, J Neurosci, 33, 10616, 10.1523/JNEUROSCI.0404-13.2013 Sun, 2015, Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs, Nat Neurosci Ferster, 2000, Neural mechanisms of orientation selectivity in the visual cortex, Annu Rev Neurosci, 23, 441, 10.1146/annurev.neuro.23.1.441 Troyer, 2002, LGN input to simple cells and contrast-invariant orientation tuning: an analysis, J Neurophysiol, 87, 2741, 10.1152/jn.2002.87.6.2741 Alitto, 2004, Influence of contrast on orientation and temporal frequency tuning in ferret primate visual cortex, J Neurophysiol, 91, 2797, 10.1152/jn.00943.2003 Palmer, 2007, Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat v1, J Neurophysiol, 98, 63, 10.1152/jn.00152.2007 Anderson, 2000, The contribution of noise to contrast invariance of orientation tuning in cat visual cortex, Science, 290, 1968, 10.1126/science.290.5498.1968 Sadagopan, 2012, Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex, Neuron, 74, 911, 10.1016/j.neuron.2012.05.007 Li, 2015, Strengthening of direction selectivity by broadly tuned and spatiotemporally slightly offset inhibition in mouse visual cortex, Cereb Cortex, 25, 2466, 10.1093/cercor/bhu049 Li, 2014, A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex, J Neurosci, 34, 13670, 10.1523/JNEUROSCI.1516-14.2014 Li, 2012, Broadening of cortical inhibition mediates developmental sharpening of orientation selectivity, J Neurosci, 32, 3981, 10.1523/JNEUROSCI.5514-11.2012 Liu, 2011, Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells, Neuron, 71, 542, 10.1016/j.neuron.2011.06.017 Liu, 2010, Intervening inhibition underlies simple-cell receptive field structure in visual cortex, Nat Neurosci, 13, 89, 10.1038/nn.2443 Wu, 2008, Lateral sharpening of cortical frequency tuning by approximately balanced inhibition, Neuron, 58, 132, 10.1016/j.neuron.2008.01.035 Wu, 2006, Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning, Neuron, 52, 705, 10.1016/j.neuron.2006.10.009 Cruikshank, 2007, Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex, Nat Neurosci, 10, 462, 10.1038/nn1861 Swadlow, 2002, Thalamocortical control of feed-forward inhibition in awake somatosensory ‘barrel’ cortex, Philos Trans R Soc Lond B Biol Sci, 357, 1717, 10.1098/rstb.2002.1156 Wehr, 2003, Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex, Nature, 426, 442, 10.1038/nature02116 Wilent, 2005, Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex, Nat Neurosci, 8, 1364, 10.1038/nn1545 Pehlevan, 2014, Selectivity and sparseness in randomly connected balanced networks, PLOS ONE, 9, e89992, 10.1371/journal.pone.0089992 Hansel, 2012, The mechanism of orientation selectivity in primary visual cortex without a functional map, J Neurosci, 32, 4049, 10.1523/JNEUROSCI.6284-11.2012 Sadeh, 2015, Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics, PLoS Comput Biol, 11, e1004045, 10.1371/journal.pcbi.1004045 Sato, 2014, Distal connectivity causes summation and division across mouse visual cortex, Nat Neurosci, 17, 30, 10.1038/nn.3585 Sengpiel, 1997, Characteristics of surround inhibition in cat area 17, Exp Brain Res, 116, 216, 10.1007/PL00005751 Polat, 1998, Collinear stimuli regulate visual responses depending on cell's contrast threshold, Nature, 391, 580, 10.1038/35372 Ichida, 2007, Response facilitation from the “suppressive” receptive field surround of macaque V1 neurons, J Neurophysiol, 98, 2168, 10.1152/jn.00298.2007 Schwabe, 2010, Contrast-dependence of surround suppression in Macaque V1: experimental testing of a recurrent network model, Neuroimage, 52, 777, 10.1016/j.neuroimage.2010.01.032 Sceniak, 1999, Contrast's effect on spatial summation by macaque v1 neurons, Nat Neurosci, 2, 733, 10.1038/11197 Anderson, 2001, Membrane potential and conductance changes underlying length tuning of cells in cat primary visual cortex, J Neurosci, 21, 2104, 10.1523/JNEUROSCI.21-06-02104.2001 Nienborg, 2013, Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1, J Neurosci, 33, 11145, 10.1523/JNEUROSCI.5320-12.2013 Vaiceliunaite, 2013, Spatial integration in mouse primary visual cortex, J Neurophysiol, 110, 964, 10.1152/jn.00138.2013 Ayaz, 2013, Locomotion controls spatial integration in mouse visual cortex, Curr Biol, 23, 890, 10.1016/j.cub.2013.04.012 Shushruth, 2009, Comparison of spatial summation properties of neurons in macaque V1 and V2, J Neurophysiol, 102, 2069, 10.1152/jn.00512.2009 Tsui, 2011, Contrast sensitivity of MT receptive field centers and surrounds, J Neurophysiol, 106, 1888, 10.1152/jn.00165.2011 Hunter, 2011, Stimulus-dependent modulation of suppressive influences in MT, J Neurosci, 31, 678, 10.1523/JNEUROSCI.4560-10.2011 Heuer, 2002, Contrast dependence of response normalization in area MT of the rhesus macaque, J Neurophysiol, 88, 3398, 10.1152/jn.00255.2002 Ahmadian, 2013, Analysis of the stabilized supralinear network, Neural Comput, 25, 1994, 10.1162/NECO_a_00472 Rubin, 2015, The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex, Neuron, 85, 402, 10.1016/j.neuron.2014.12.026 Priebe, 2008, Inhibition, spike threshold and stimulus selectivity in primary visual cortex, Neuron, 57, 482, 10.1016/j.neuron.2008.02.005 Miller, 2002, Neural noise can explain expansive, power-law nonlinearities in neural response functions, J Neurophysiol, 87, 653, 10.1152/jn.00425.2001 Hansel, 2002, How noise contributes to contrast invariance of orientation tuning in cat visual cortex, J Neurosci, 22, 5118, 10.1523/JNEUROSCI.22-12-05118.2002 Churchland, 2010, Stimulus onset quenches neural variability: a widespread cortical phenomenon, Nat Neurosci, 13, 369, 10.1038/nn.2501 Mitchell, 2009, Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4, Neuron, 63, 879, 10.1016/j.neuron.2009.09.013 Cohen, 2009, Attention improves performance primarily by reducing interneuronal correlations, Nat Neurosci, 12, 1594, 10.1038/nn.2439 Ghose, 2009, Attentional modulation of visual responses by flexible input gain, J Neurophysiol, 101, 2089, 10.1152/jn.90654.2008 Lee, 2009, A normalization model of attentional modulation of single unit responses, PLoS ONE, 4, e4651, 10.1371/journal.pone.0004651 Boynton, 2009, A framework for describing the effects of attention on visual responses, Vis Res, 49, 1129, 10.1016/j.visres.2008.11.001 van Vreeswijk, 1998, Chaotic balanced state in a model of cortical circuits, Neural Comput, 10, 1321, 10.1162/089976698300017214 Shao, 2013, Plasticity of recurrent l2/3 inhibition and gamma oscillations by whisker experience, Neuron, 80, 210, 10.1016/j.neuron.2013.07.026 Silberberg, 2007, Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells, Neuron, 53, 735, 10.1016/j.neuron.2007.02.012 Kapfer, 2007, Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex, Nat Neurosci, 10, 743, 10.1038/nn1909 Tsodyks, 1997, Paradoxical effects of external modulation of inhibitory interneurons, J Neurosci, 17, 4382, 10.1523/JNEUROSCI.17-11-04382.1997 Murphy, 2009, Balanced amplification: a new mechanism of selective amplification of neural activity patterns, Neuron, 61, 635, 10.1016/j.neuron.2009.02.005 Ozeki, 2009, Inhibitory stabilization of the cortical network underlies visual surround suppression, Neuron, 62, 578, 10.1016/j.neuron.2009.03.028 Haider, 2010, Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation, Neuron, 65, 107, 10.1016/j.neuron.2009.12.005 Adesnik, 2012, A neural circuit for spatial summation in visual cortex, Nature, 490, 226, 10.1038/nature11526 Pecka, 2014, Experience-dependent specialization of receptive field surround for selective coding of natural scenes, Neuron, 84, 457, 10.1016/j.neuron.2014.09.010 Zhou, 2014, Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex, Nat Neurosci, 17, 841, 10.1038/nn.3701 Bullier, 2001, The role of feedback connections in shaping the responses of visual cortical neurons, Prog Brain Res, 134, 193, 10.1016/S0079-6123(01)34014-1 Nassi, 2013, Corticocortical feedback contributes to surround suppression in V1 of the alert primate, J Neurosci, 33, 8504, 10.1523/JNEUROSCI.5124-12.2013 Nassi, 2014, Corticocortical feedback increases the spatial extent of normalization, Front Syst Neurosci, 8, 105, 10.3389/fnsys.2014.00105 Alitto, 2015, Dissecting the dynamics of corticothalamic feedback, Neuron, 86, 605, 10.1016/j.neuron.2015.04.016 Crandall, 2015, A corticothalamic switch: controlling the thalamus with dynamic synapses, Neuron, 86, 768, 10.1016/j.neuron.2015.03.040 Ganguli, 2008, One-dimensional dynamics of attention and decision-making in LIP, Neuron, 58, 15, 10.1016/j.neuron.2008.01.038 Elston, 2003, Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function, Cereb Cortex, 13, 1124, 10.1093/cercor/bhg093 Chaudhuri, 2015, A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex, Neuron, 88, 419, 10.1016/j.neuron.2015.09.008 Dayan, 2001 Honey, 2012, Slow cortical dynamics and the accumulation of information over long timescales, Neuron, 76, 423, 10.1016/j.neuron.2012.08.011 Murray, 2014, A hierarchy of intrinsic timescales across primate cortex, Nat Neurosci, 17, 1661, 10.1038/nn.3862 Amit, 1989 Sussillo, 2009, Generating coherent patterns of activity from chaotic neural networks, Neuron, 63, 544, 10.1016/j.neuron.2009.07.018 Laje, 2013, Robust timing and motor patterns by taming chaos in recurrent neural networks, Nat Neurosci, 16, 925, 10.1038/nn.3405 Barak, 2013, From fixed points to chaos: three models of delayed discrimination, Prog Neurobiol, 103, 214, 10.1016/j.pneurobio.2013.02.002 Sussillo, 2014, Neural circuits as computational dynamical systems, Curr Opin Neurobiol, 25, 156, 10.1016/j.conb.2014.01.008 Van Hooser, 2007, Similarity and diversity in visual cortex: is there a unifying theory of cortical computation?, Neuroscientist, 13, 639, 10.1177/1073858407306597 Lund, 1993, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cereb Cortex, 3, 148, 10.1093/cercor/3.2.148 Van Hooser, 2006, Lack of patchy horizontal connectivity in primary visual cortex of a mammal without orientation maps, J Neurosci, 26, 7680, 10.1523/JNEUROSCI.0108-06.2006 Kaschube, 2014, Neural maps versus salt-and-pepper organization in visual cortex, Curr Opin Neurobiol, 24, 95, 10.1016/j.conb.2013.08.017