Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness
Tóm tắt
Previously we have found that cannabinoid treatment of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. Such persistently altered behavior must be attributable to changes in physiological substrates responsible for song. We are currently working to identify the nature of such physiological changes, and to understand how they contribute to altered vocal learning. One possibility is that developmental agonist exposure results in altered expression of elements of endocannabinoid signaling systems. To test this hypothesis we have studied effects of the potent cannabinoid receptor agonist WIN55212-2 (WIN) on endocannabinoid levels and densities of CB1 immunostaining in zebra finch brain. We found that late postnatal WIN treatment caused a long-term global disregulation of both levels of the endocannabinoid, 2-arachidonyl glycerol (2-AG) and densities of CB1 immunostaining across brain regions, while repeated cannabinoid treatment in adults produced few long-term changes in the endogenous cannabinoid system. Our findings indicate that the zebra finch endocannabinoid system is particularly sensitive to exogenous agonist exposure during the critical period of song learning and provide insight into susceptible brain areas.
Tài liệu tham khảo
Bottjer SW, Johnson F: Circuits, hormones, and learning: vocal behavior in songbirds. J Neurobiol. 1997, 33 (5): 602-18. 10.1002/(SICI)1097-4695(19971105)33:5<602::AID-NEU8>3.0.CO;2-8.
Soderstrom K, Johnson F: Cannabinoid exposure alters learning of zebra finch vocal patterns. Brain Res Dev Brain Res. 2003, 142 (2): 215-7. 10.1016/S0165-3806(03)00061-0.
Soderstrom K, et al.: Endocannabinoids link feeding state and auditory perception-related gene expression. J Neurosci. 2004, 24 (44): 10013-21. 10.1523/JNEUROSCI.3298-04.2004.
Soderstrom K, Tian Q: Developmental pattern of CB1 cannabinoid receptor immunoreactivity in brain regions important to zebra finch (Taeniopygia guttata) song learning and control. J Comp Neurol. 2006, 496 (5): 739-758. 10.1002/cne.20963.
De Petrocellis L, Di Marzo V: An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab. 2009, 23 (1): 1-15. 10.1016/j.beem.2008.10.013.
Jalink K, Moolenaar WH: G protein-coupled receptors: the inside story. Bioessays. 2010, 32 (1): 13-6. 10.1002/bies.200900153.
Soderstrom K, Tian Q: Distinct periods of cannabinoid sensitivity during zebra finch vocal development. Brain Res Dev Brain Res. 2004, 153 (2): 225-32. 10.1016/j.devbrainres.2004.09.002.
Blair RE, et al.: Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy. Neuropharmacology. 2009, 57 (3): 208-218. 10.1016/j.neuropharm.2009.06.007.
Spear L: Modeling adolescent development and alcohol use in animals. Alcohol Res Health. 2000, 24 (2): 115-23.
Hsieh C, et al.: Internalization and recycling of the CB1 cannabinoid receptor. J Neurochem. 1999, 73 (2): 493-501. 10.1046/j.1471-4159.1999.0730493.x.
Smith TH, Sim-Selley LJ, Selley DE: Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?. Br J Pharmacol. 2010, 160 (3): 454-66. 10.1111/j.1476-5381.2010.00777.x.
Soderstrom K, Luo B: Late-postnatal cannabinoid exposure persistently increases FoxP2 expression within zebra finch striatum. Dev Neurobiol. 2010, 70 (3): 195-203.
Zann R: The zebra finch: a synthesis of field an laboratory studies. 1996, New York: Oxford University Press
Lafenetre P, Chaouloff F, Marsicano G: The endocannabinoid system in the processing of anxiety and fear and how CB1 receptors may modulate fear extinction. Pharmacol Res. 2007, 56 (5): 367-81. 10.1016/j.phrs.2007.09.006.
McCasland JS: Neuronal control of bird song production. J Neurosci. 1987, 7 (1): 23-39.
Leblois A, et al.: Millisecond timescale disinhibition mediates fast information transmission through an avian basal ganglia loop. J Neurosci. 2009, 29 (49): 15420-33. 10.1523/JNEUROSCI.3060-09.2009.
Soderstrom K, Johnson F: Zebra finch CB1 cannabinoid receptor: pharmacology and in vivo and in vitro effects of activation. J Pharmacol Exp Ther. 2001, 297 (1): 189-97.
Scharff C, Nottebohm F: A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci. 1991, 11 (9): 2896-913.
Nguyen PT, Selley DE, Sim-Selley LJ: Statistical Parametric Mapping reveals ligand and region-specific activation of G-proteins by CB1 receptors and non-CB1 sites in the 3D reconstructed mouse brain. Neuroimage. 2010, 52 (4): 1243-51. 10.1016/j.neuroimage.2010.04.259.
Vilches-Flores A, et al.: CB1 cannabinoid receptor expression is regulated by glucose and feeding in rat pancreatic islets. Regul Pept. 2010, 163 (1-3): 81-7. 10.1016/j.regpep.2010.04.013.
Bottjer SW, Miesner EA, Arnold AP: Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science. 1984, 224 (4651): 901-903. 10.1126/science.6719123.
Sohrabji F, Nordeen EJ, Nordeen KW: Selective impairment of song learning following lesions of a forebrain nucleus in the juvenile zebra finch. Behav Neural Biol. 1990, 53 (1): 51-63. 10.1016/0163-1047(90)90797-A.
Spence RD, et al.: Recovery of motor and cognitive function after cerebellar lesions in a songbird: role of estrogens. Eur J Neurosci. 2009, 29 (6): 1225-34. 10.1111/j.1460-9568.2009.06685.x.
Hutcheson DM, et al.: Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br J Pharmacol. 1998, 125 (7): 1567-77. 10.1038/sj.bjp.0702228.
Schlicker E, Kathmann M: Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci. 2001, 22 (11): 565-572. 10.1016/S0165-6147(00)01805-8.
Elphick MR, Egertova M: The neurobiology and evolution of cannabinoid signalling. Philos Trans R Soc Lond B Biol Sci. 2001, 356 (1407): 381-408. 10.1098/rstb.2000.0787.
Arenz A, Bracey EF, Margrie TW: Sensory representations in cerebellar granule cells. Curr Opin Neurobiol. 2009, 19 (4): 445-451. 10.1016/j.conb.2009.07.003.
Soderstrom K, Tian Q: Developmental pattern of CB1 cannabinoid receptor immunoreactivity in brain regions important to zebra finch (Taeniopygia guttata) song learning and control. J Comp Neurol. 2006, 496 (5): 739-58. 10.1002/cne.20963.
Grisham W, Arnold AP: Distribution of GABA-like immunoreactivity in the song system of the zebra finch. Brain Res. 1994, 651 (1-2): 115-122. 10.1016/0006-8993(94)90686-6.
Luo M, Perkel DJ: Long-range GABAergic projection in a circuit essential for vocal learning. J Comp Neurol. 1999, 403 (1): 68-84. 10.1002/(SICI)1096-9861(19990105)403:1<68::AID-CNE6>3.0.CO;2-5.
Soderstrom K, Qin W, Leggett MH: A minimally invasive procedure for sexing young zebra finches. J Neurosci Methods. 2007, 164 (1): 116-9. 10.1016/j.jneumeth.2007.04.007.
Soderstrom K, Tian Q: CB(1) cannabinoid receptor activation dose dependently modulates neuronal activity within caudal but not rostral song control regions of adult zebra finch telencephalon. Psychopharmacology (Berl). 2008, 199 (2): 265-73. 10.1007/s00213-008-1190-z.
Soderstrom K, Luo B: Late-postnatal cannabinoid exposure persistently increases FoxP2 expression within zebra finch striatum. Developmental Neurobiology. 2010, 70 (3): 195-203.
Soderstrom K, Johnson F: Cannabinoid exposure alters learning of zebra finch vocal patterns. Brain Res Dev Brain Res. 2003, 142 (2): 215-7. 10.1016/S0165-3806(03)00061-0.
Soderstrom K, Tian Q: Distinct periods of cannabinoid sensitivity during zebra finch vocal development. Developmental Brain Research. 2004, 153 (2): 225-232. 10.1016/j.devbrainres.2004.09.002.
Whitney O, Soderstrom K, Johnson F: Post-transcriptional regulation of zenk expression associated with zebra finch vocal development. Brain Res Mol Brain Res. 2000, 80 (2): 279-90. 10.1016/S0169-328X(00)00178-9.
Nagel KI, Doupe AJ: Organizing Principles of Spectro-Temporal Encoding in the Avian Primary Auditory Area Field L. Neuron. 2008, 58 (6): 938-955. 10.1016/j.neuron.2008.04.028.
Richardson D, et al.: Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal Biochem. 2007, 360 (2): 216-26. 10.1016/j.ab.2006.10.039.