Can the level of HbA1C predict diabetic retinopathy among type II diabetic patients?
Tóm tắt
Hemoglobin A1C (HbA1C) test is the best care evaluation measurement due to a strong correlation between the test results and diabetic complications. So, this cross-sectional study aimed to assess whether the level of HbA1C can predict Diabetic Retinopathy (DR) among Type 2 diabetes mellitus (T2DM) in the Iranian population. One hundred sixty-eight diabetic patients were selected via the convenience sampling method. Data were collected by research made questionnaire scale and laboratory test had been done. To estimate the cut off point for some variables statistical tests, formal measures of classification performance, model evaluation criteria and a decision Tree were used. The prevalence of DR was 29.8%. The Receiver Operating Characteristic (ROC) curve and decision tree showed the optimal cut-off point for the HbA1C variable that separates the patient with and without DR is HbA1C = 8.15. Current study showed an appropriate cutoff point for detecting the development of DR among diabetic patients. So, this cutoff point can be used as guide evidence in several clinical judgments on the Iranian population.
Tài liệu tham khảo
Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. Lancet. 2016;387(10027):1513–30.
Federation. ID. IDF Diabetes Atlas. 2015; Available from: http://www.diabetesatlas.org/.
Mohammadi M, Raiegani AAV, Jalali R, Ghobadi A, Salari N. The prevalence of retinopathy among type 2 diabetic patients in Iran: a systematic review and meta-analysis. Rev Endocrine Metab Disord. 2019;20(1):79–88.
WHO. Diabetes country profiles 2016. ; Available from: https://www.who.int/diabetes/country-profiles/irn_en.pdf?ua=1.
Litwak L, Goh S-Y, Hussein Z, Malek R, Prusty V, Khamseh ME. Prevalence of diabetes complications in people with type 2 diabetes mellitus and its association with baseline characteristics in the multinational a 1 chieve study. Diabetol Metab Syndrome. 2013;5(1):57.
Wang W, Lo AC. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.
Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, Lopez-Galvez M, Navarro-Gil R, Verges R. Diabetic macular edema pathophysiology: vasogenic versus inflammatory. J Diabetes Res. 2016;2016. Article ID 2156273. https://doi.org/10.1155/2016/2156273.
Wykoff CC, Khurana RN, Nguyen QD, Kelly SP, Lum F, Hall R, et al. Risk of blindness among patients with diabetes and newly diagnosed diabetic retinopathy. Diabetes Care. 2021;44(3):748–56.
Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vis Res. 2017;139:7–14.
Whitehead M, Wickremasinghe S, Osborne A, Van Wijngaarden P, Martin KR. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expert Opin Biol Ther. 2018;18(12):1257–70.
Maroufizadeh S, Almasi-Hashiani A, Hosseini M, Sepidarkish M, Samani RO. Prevalence of diabetic retinopathy in Iran: a systematic review and Meta-analysis. Int J Ophthalmol. 2017;10(5):782.
Chua J, Lim CXY, Wong TY, Sabanayagam C. Diabetic retinopathy in the Asia-Pacific. Asia Pacific J Ophthalmol. 2018;7(1):3–16.
Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150–60.
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88.
Tricco AC, Ivers NM, Grimshaw JM, Moher D, Turner L, Galipeau J, et al. Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis. Lancet. 2012;379(9833):2252–61.
(WHO) WHO. Diabetes. Available from: https://www.who.int/health-topics/diabetes#tab=tab_3.
Matsushita Y, Takeda N, Nakamura Y, Yoshida-Hata N, Yamamoto S, Noda M, et al. A comparison of the Association of Fasting Plasma Glucose and HbA1c levels with diabetic retinopathy in Japanese men. J Diabetes Res. 2020;2020. Article ID 3214676. https://doi.org/10.1155/2020/3214676.
Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycaemia in type 2 diabetes mellitus: a consensus algorithm for the initiation and adjustment of therapy. Diabetologia. 2009;52(1):17–30.
Cho NH, Kim TH, Woo SJ, Park KH, Lim S, Cho YM, et al. Optimal HbA1c cutoff for detecting diabetic retinopathy. Acta Diabetol. 2013;50(6):837–42.
Sumner AE, Thoreson CK, O'Connor MY, Ricks M, Chung ST, Tulloch-Reid MK, et al. Detection of abnormal glucose tolerance in Africans is improved by combining A1C with fasting glucose: the Africans in America study. Diabetes Care. 2015;38(2):213–9.
Yao L, Zhong Y, He L, Wang Y, Wu J, Geng J, et al. Serum CA125 level is associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetes Metab Syndrome Obes. 2020;13:1803.
Haneda S, Yamashita H. International clinical diabetic retinopathy disease severity scale. Nihon Rinsho Japan J Clin Med. 2010;68:228–35.
Katibeh M, Behboudi H, Moradian S, Alizadeh Y, Beiranvand R, Sabbaghi H, et al. Rapid assessment of avoidable blindness and diabetic retinopathy in Gilan Province, Iran. Ophthal Epidemiol. 2017;24(6):381–7.
Sun Q, Jing Y, Zhang B, Gu T, Meng R, Sun J, et al. The risk factors for diabetic retinopathy in a Chinese population: a cross-Sectional study. J Diabetes Res. 2021;2021.Article ID 5340453. https://doi.org/10.1155/2021/5340453.
Peng Y, Guo X, Liu J, Yao Y, Guo H, Wang Y, et al. Incidence and risk factors for diabetic retinopathy in the communities of Shenzhen. Ann Palliative Med. 2021;10(1):615–24.
Aziz KM. Association of Diabetic Retinopathy and Maculopathy with elevated HbA1c. Blood Pressure, Serum Creatinine, Microalbuminuria, Spot Urine Protein, Nephropathy and Diabetic Kidney Disease An Experience from Data Analysis of. 2018;5(1):1–11.
Aidenloo NS, Mehdizadeh A, Valizadeh N, Abbaszadeh M, Qarequran S, Khalkhali H. Optimal glycemic and hemoglobin A1c thresholds for diagnosing diabetes based on prevalence of retinopathy in an Iranian population. Iran Red Crescent Med J. 2016;18(8):e31254.
Engelgau MM, Thompson TJ, Herman WH, Boyle JP, Aubert RE, Kenny SJ, et al. Comparison of fasting and 2-hour glucose and HbA1c levels for diagnosing diabetes: diagnostic criteria and performance revisited. Diabetes Care. 1997;20(5):785–91.
Xin Z, Yuan M-X, Li H-X, Hua L, Feng J-P, Shi J, et al. Evaluation for fasting and 2-hour glucose and HbA 1 c for diagnosing diabetes based on prevalence of retinopathy in a Chinese population. PLoS One. 2012;7(7):e40610.
Long M, Wang C, Liu D. Glycated hemoglobin A1C and vitamin D and their association with diabetic retinopathy severity. Nutr Diabetes. 2017;7(6):e281-e.
Traveset A, Rubinat E, Ortega E, Alcubierre N, Vazquez B, Hernández M, et al. Lower hemoglobin concentration is associated with retinal ischemia and the severity of diabetic retinopathy in type 2 diabetes. J Diabetes Res. 2016;2016:3674946.
Scanlon PH. Improving the screening of risk factors in diabetic retinopathy. Expert Rev Endocrinol Metab. 2022;17(3):235–43.