Can the Multicomponent Dark Matter be Visible Due to the Inner Luminescence?

Pleiades Publishing Ltd - Tập 20 - Trang 495-500 - 2023
V. Beylin1, M. Bezuglov2
1Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
2Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Russia

Tóm tắt

A new effect of the multicomponent Dark Matter luminescence due to transitions between its mass-splitted components is discussed. Radiation of photons with energies up to 10 GeV from regions of high Dark Matter density is possible.The effect is found in the hypercolor vector extension of the Standard Model, where heavy stable neutral hyperpions and hyperbaryons are considered as the Dark Matter candidates.

Tài liệu tham khảo

J. L. Feng, “Dark matter candidates from particle physics and methods of detection,” Rev. Astron. Astrophys. 48, 495 (2010). https://doi.org/10.1146/annurev-astro-082708-101659Ann L. Roszkowski, E. M. Sessolo, and S. Trojanowski, “WIMP dark matter candidates and searches? Current status and future prospects,” Rep. Prog. Phys. 81, 066201 (2018). arXiv:1707.06277 [hep-ph]. https://doi.org/10.1088/1361-6633/aab913 M. Cirelli. “Dark matter indirect searches: phenomenological and theoretical aspects,” J. Phys.: Conf. Ser. 447, 012006 (2013). https://doi.org/10.1088/1742-6596/447/1/012006 M. Yu. Khlopov, “Introduction to the special issue on indirect dark matter searches,” Int. J. Mod. Phys. A 29, 144302 (2014). https://doi.org/10.1142/S0217732314020015 J. M. Gaskins, “A review of indirect searches for particle dark matter,” Contemp. Phys. 57, 4962016. arXiv: 1604.00014 [hep-ph]. https://doi.org/10.1080/00107514.2016.1175160 G. Arcadi et al., “The waning of the WIMP? A review of models, searches, and constraints,” Eur. Phys. J. C 78, 203 (2018). arXiv:1703.07364 [hep-ph]. https://doi.org/10.1140/epjc/s10052-018-5662-y M. Di Mauro, “Characteristics of the galactic center excess measured with 11 years of Fermi-LAT data,” Phys. Rev. D 103, 063029 (2021). https://doi.org/10.1103/PhysRevD.103.063029 H. Abdallah et al. (HESS Collab.), “Search for γ ray line signals from dark matter annihilations in the inner galactic halo from 10 years of observations with HESS,” Phys. Rev. Lett. 120, 201101 (2018). arXiv:1805.05741 [hep-ph]. https://doi.org/10.1103/PhysRevLett.120.201101 M. Aguilar et al. (AMS Collab.), “Towards understanding the origin of cosmic-ray positrons, Phys. Rev. Lett. 122, 041102 (2019). https://doi.org/10.1103/PhysRevLett.122.041102 M. Yu.Khlopov, “Physical Arguments, Favouring Multicomponent Dark Matter,” in Frontiers in Physics, Ed. B. Guiderdoni (1995), pp. 133–138. K. M. Zurek, “Multi-component dark matter,” Phys. Rev. D 79, 115002 (2009). arXiv:0811.4429 [hep-ph]. https://doi.org/10.1103/PhysRevD.79.115002 M. Aoki et al. “Multicomponent dark matter systems and their observation prospects,” Phys. Rev. D 86, 076015 (2012). https://doi.org/10.1103/PhysRevD.86.076015 A. Biswas et al., “Two component dark matter: A possible explanation of 130 GeV γ-ray line from the galactic centre,” J. Cosmol. Astropart. Phys. 12, 049 (2013). arXiv:1301.3668 [hep-ph]. https://doi.org/10.1088/1475-7516/2013/12/049 A. Dutta Banik et al., “Two component WIMP?FImP dark matter model with singlet fermion, scalar and pseudo scalar,” Eur. Phys. J. C 77, 657 (2017). arXiv: 1612.08621. [hep-ph]DOI: https://doi.org/10.1140/epjc/s10052-017-5221-y C. Q. Geng, C. Da Huang, and C. Lai, “Multi-component dark matter,” Int J. Mod. Phys. 30, 28 (2015). https://doi.org/10.1142/S0217751X15450098 A. Ahmed et al., “Multi-component dark matter: the vector and fermion case,” Eur. Phys. J. C 78, 905 (2018). arXiv:1710.01853 [hep-ph]. https://doi.org/10.5506/APhysPolB.48.2405 S. Bhattacharya et al., “Multiparticle dark matter with scalars, fermions and signatures at LHC,” J. High Energy Phys. 02, 059 (2019). arXiv:1809.07474 [hep-ph]. https://doi.org/10.1007/JHEP02(2019)059 G. Arcadi et al., “Multicomponent dark matter from gauge symmetry,” J. High Energy Phys. 12, 081 (2016). arXiv:1611.00365 [hep-ph]. https://doi.org/10.1007/JHEP12(2016)081JHEP S. Chakraborti and P. Poulose, “Interplay of scalar and fermionic components in a multi-component dark matter scenario,” Eur. Phys. J. C 79, 420 (2019). arXiv: 1808.01979 [hep-ph]. https://doi.org/10.1140/epjc/s10052-019-6933-y G. Palacio et al., “Inert doublet as multicomponent dark matter,” Nucl. Phys. B 962, 115276 (2021). https://doi.org/10.1016/j.nuclphysb.2020.115276 S. Bhattacharya et al., “Two component dark matter with inert Higgs doublet: neutrino mass, high scale validity and collider searches,” J. High Energy Phys. 03, 090 (2020). arXiv:1905.12583 [hep-ph]. https://doi.org/10.1007/JHEP03(2020)090 C. H. Nam et al., “Multi-component dark matter in noncommutative B-L gauge theory,” J. High Energy Phys. 29, 12 (2020). https://doi.org/10.1007/JHEP12(2020)029 A. DiFranzo and G. Mohlabeng, “Multi-component dark matter through a radiative Higgs portal,” J. High Energy Phys. 01, 080 (2017). arXiv:1610.07606 [hep-ph]. https://doi.org/10.1007/JHEP01(2017)080 S. Chakraborti et al., “Probing multicomponent extension of inert doublet model with a vector dark matter,” Eur. Phys. J. C 79, 662 (2019). arXiv:1810.05595 [hep-ph]. https://doi.org/10.1140/epjc/s10052-019-7165-x A. Poulin and S. Godfrey, “Multi-component dark matter from a hidden gauged SU(3),” Phys. Rev. D 99, 076008 (2019). https://doi.org/10.1103/PhysRevD.99.076008 A. Ahmed et al., “Multi-component dark matter: the vector and fermion case,” Eur.Phys. J. C 78, 905 (2018). https://doi.org/10.1140/epjc/s10052-018-6371-2 V. Beylin and V. Kuksa, “Possibility of hadronic dark matter,” Int. J. Mod. Phys. D 28, 1941001 (2019). https://doi.org/10.1142/S0218271819410013 J. M. Cudell and M. Khlopov, “Dark atoms with nuclear shell: A status review,” Int. J. Mod. Phys. D 24, 1545007 (2015). https://doi.org/10.1142/S0218271815450078 V. Beylin et al., “Hadronic and hadron-like physics of dark matter,” Symmetry 11, 587 (2019). https://doi.org/10.3390/sym11040587 C. Kilic, T. Okui, and R. Sundrum, “Vector-like confinement at the LHC,” J. High Energy Phys. 18, 18 (2010). arXiv:1904.04837 [hep-ph]. https://doi.org/10.1007/JHEP02(2010)018 O. Antipin, M. Redi, and A. Strumia, “Dynamical generation of the weak and dark matter scales from strong interactions,” J. High Energy Phys. 157, 157 (2015). https://doi.org/10.1007/JHEP01(2015)157 R. Pasechnik et al., “Chiral-symmetric technicolor with standard model Higgs boson,” Phys. Rev. D 88, 075009 (2013). https://doi.org/10.1103/PhysRevD.88.075009 V. Beylin et al., “An analysis of a minimal vector-like extension of the Standard Model,” Adv. High Energy Phys. 2017, 1765340 (2017). https://doi.org/10.1155/2017/1765340 Y. Bai and R. J. Hill, “Weakly interacting stable hidden sector pions,” Phys. Rev. D 82, 111701 (2010). https://doi.org/10.1103/PhysRevD.82.111701 V. Beylin et al., “On the scattering of a high-energy cosmic ray electrons off the dark matter,” Int. J. Mod. Phys. A 6, 34 (2019). https://doi.org/10.1142/S0217751X19500404 K. M. Belotsky, A. A. Kirillov, and M. Yu. Khlopov, “Astrophysical manifestations of clumps of cold dark matter,” Phys. Atom. Nucl. 76, 469 (2013). https://doi.org/10.1134/S1063778813040029 V. Kuksa and V. Beylin, “Hyperfine splitting of excited states of new heavy hadrons and low-energy interaction of hadronic dark matter with photons, nucleons, and leptons,” Universe 6, 6 (2020). https://doi.org/10.3390/sym12040567