Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?

Energy and Environmental Science - Tập 14 Số 5 - Trang 2535-2548
Miao Wang1,2,3,4, Mohd Adnan Khan1,2,3,4, Imtinan Mohsin1,2,3,4, Joshua Wicks1,5,6,7, Alexander H. Ip1,5,6,7, Kazi Z. Sumon1,2,3,4, Cao‐Thang Dinh1,8,9,10, Edward H. Sargent1,5,6,7, Ian D. Gates1,2,3,4, Md Golam Kibria1,2,3,4
1Canada
2Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
3NW Calgary
4University of Calgary
5Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada
6Toronto
7University of Toronto
8Department of Chemical Engineering, Queen's University, 19 Division St, Kingston, ON, Canada
9Kingston
10Queen's University

Tóm tắt

This analysis presents system level analysis of three stages along the transition towards sustainable synthesis of ammonia.

Từ khóa


Tài liệu tham khảo

Food and Agriculture Organization of United Nations. World fertilizer trends and outlook to 2020, 2017, http://www.fao.org/3/a-i6895e.pdf

Zhang, 2015, Nature, 528, 51, 10.1038/nature15743

Erisman, 2008, Nat. Geosci., 1, 636, 10.1038/ngeo325

Morgan, 2017, ACS Sustainable Chem. Eng., 5, 9554, 10.1021/acssuschemeng.7b02070

Global Ammonia Market is Expected to Reach USD 81.42 Billion by 2025: Fior Markets, https://www.globenewswire.com/news-release/2020/03/16/2000828/0/en/Global-Ammonia-Market-is-Expected-to-Reach-USD-81-42-Billion-by-2025-Fior-Markets.html , (accessed 18 October 2020)

Valera-Medina, 2018, Prog. Energy Combust. Sci., 69, 63, 10.1016/j.pecs.2018.07.001

Christensen, 2006, Catal. Today, 111, 140, 10.1016/j.cattod.2005.10.011

Giddey, 2017, ACS Sustainable Chem. Eng., 5, 10231, 10.1021/acssuschemeng.7b02219

T. Ramsden , M.Ruth , V.Diakov , M.Laffen and T. A.Timbario , Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios (NREL) , Golden, 2007, https://www.nrel.gov/docs/fy14osti/60528.pdf

G. Vezina , Diesel generators and trucks to use green ammonia fuel, https://www.einpresswire.com/article/488153707/diesel-generators-and-trucks-to-use-green-ammonia-fuel , (accessed 6 July 2020)

Bicer, 2018, Int. J. Hydrogen Energy, 43, 4583, 10.1016/j.ijhydene.2017.07.110

Yapicioglu, 2019, Renewable Sustainable Energy Rev., 103, 96, 10.1016/j.rser.2018.12.023

Gas Turbine Power Generation with a Methane-Ammonia Gas Mixture and 100% Ammonia, https://www.aist.go.jp/aist_e/list/latest_research/2016/20160412/en20160412.html , (accessed 6 July 2020)

MacFarlane, 2020, Joule, 4, 1186, 10.1016/j.joule.2020.04.004

Mohsin, 2020, Cell Rep. Phys. Sci., 1, 100104, 10.1016/j.xcrp.2020.100104

Adnan, 2020, Appl. Energy, 278, 115614, 10.1016/j.apenergy.2020.115614

Grinberg Dana, 2016, Angew. Chem., Int. Ed., 55, 8798, 10.1002/anie.201510618

C. Philibert , Producing ammonia and fertilizers: new opportunities from renewables (International Energy Agency) , 2017, https://www.ee.co.za/wp-content/uploads/2017/06/Producing-ammonia-and-fertilizers-new-opportunities-from-renewables.pdf

M. Appl , Ammonia: Principles and Industrial Practice , Wiley-VCH , 1st edn, 1999

Smith, 2020, Energy Environ. Sci., 13, 331, 10.1039/C9EE02873K

V. Smil , Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production , MIT Press , Cambridge , 2004 , vol. 79

Soloveichik, 2019, Nat. Catal., 2, 377, 10.1038/s41929-019-0280-0

Elishav, 2020, Chem. Rev., 120, 5352, 10.1021/acs.chemrev.9b00538

Sikarwar, 2016, Energy Environ. Sci., 9, 2939, 10.1039/C6EE00935B

Wang, 2018, Int. J. Energy Res., 42, 3442, 10.1002/er.4044

Zhang, 2018, Nat. Catal., 1, 332, 10.1038/s41929-018-0062-0

Chu, 2016, Nat. Mater., 16, 16, 10.1038/nmat4834

Barnhart, 2013, Energy Environ. Sci., 6, 2804, 10.1039/c3ee41973h

Brouwer, 2014, Renewable Sustainable Energy Rev., 33, 443, 10.1016/j.rser.2014.01.076

Gür, 2018, Energy Environ. Sci., 11, 2696, 10.1039/C8EE01419A

Davis, 2018, Science, 360, eaas9793, 10.1126/science.aas9793

Schiffer, 2017, Joule, 1, 10, 10.1016/j.joule.2017.07.008

McPherson, 2020, Joule, 4, 12, 10.1016/j.joule.2019.12.013

Martín, 2018, Chem, 5, 263, 10.1016/j.chempr.2018.10.010

McPherson, 2019, Dalton Trans., 48, 1562, 10.1039/C8DT04019B

Zhao, 2019, EnergyChem, 1, 100011, 10.1016/j.enchem.2019.100011

Wu, 2019, Angew. Chem., Int. Ed., 58, 18449, 10.1002/anie.201911153

Chen, 2017, Angew. Chem., Int. Ed., 56, 2699, 10.1002/anie.201609533

Xia, 2019, Small Methods, 3, 1800251, 10.1002/smtd.201800251

Han, 2019, Angew. Chem., Int. Ed., 58, 2321, 10.1002/anie.201811728

Ye, 2017, Chem, 3, 712, 10.1016/j.chempr.2017.10.016

Jones, 2018, Science, 360, eaar6611, 10.1126/science.aar6611

Hochman, 2020, ACS Sustainable Chem. Eng., 8, 8938, 10.1021/acssuschemeng.0c01206

Buttler, 2018, Renewable Sustainable Energy Rev., 82, 2440, 10.1016/j.rser.2017.09.003

Nayak-Luke, 2018, Ind. Eng. Chem. Res., 57, 14607, 10.1021/acs.iecr.8b02447

IRENA International Renewable Energy Agency, Renewable Power Generation Costs in 2018 , 2018, https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf

De Luna, 2019, Science, 364, eaav3506, 10.1126/science.aav3506

Bogdanov, 2019, Nat. Commun., 10, 1, 10.1038/s41467-018-07882-8

Gomez, 2020, Int. J. Hydrogen Energy, 45, 721, 10.1016/j.ijhydene.2019.10.174

Zhang, 2020, Appl. Energy, 259, 114135, 10.1016/j.apenergy.2019.114135

Sánchez, 2018, Sustain. Prod. Consum., 16, 176, 10.1016/j.spc.2018.08.001

Matzen, 2015, J. Adv. Chem. Eng., 3, 128

FuelCellsWorks, https://fuelcellsworks.com/news/worlds-largest-hydrogen-plant-in-fukushima-opens/ , (accessed 24 November 2020)

McEnaney, 2017, Energy Environ. Sci., 10, 1621, 10.1039/C7EE01126A

Bicer, 2016, J. Cleaner Prod., 135, 1379, 10.1016/j.jclepro.2016.07.023

Pfromm, 2017, J. Renewable Sustainable Energy, 9, 1, 10.1063/1.4985090

Canadian Ammonia Producers, Benchmarking Energy Efficiency and Carbon Dioxide Emissions, 2008, https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/oee/pdf/industrial/technical-info/benchmarking/ammonia/pdf/ammonia-study.pdf

Parkinson, 2019, Energy Environ. Sci., 12, 19, 10.1039/C8EE02079E

Mortensen, 2019, Science, 364, 756, 10.1126/science.aaw8775

van Geem, 2019, Science, 364, 734, 10.1126/science.aax5179

Bui, 2018, Energy Environ. Sci., 11, 1062, 10.1039/C7EE02342A

S. Crane , Siemens develops world's first energy storage demonstrator to deliver carbon free power of the future, https://www.siemens.co.uk/pool/news_press/news_archive/2018/180618-green-ammonia.pdf , (accessed 24 November 2020)

D. Jakubowski , Yara and BASF open world-scale ammonia plant in Freeport, TX, US, https://www.basf.com/us/en/media/news-releases/2018/04/P-US-18-044.html , (accessed 25 November 2020)

T. Brown, Green ammonia pilot plants now running, in Oxford and Fukushima, https://ammoniaindustry.com/green-ammonia-pilot-plants-now-running-in-oxford-and-fukushima/ , (accessed 8 July 2020)

S. Ravn , Ammonia can become the CO 2 -free fuel of the future, https://blog.topsoe.com/ammonia-can-become-the-CO2-free-fuel-of-the-future , (accessed 24 November 2020)

Government of South Australia, Hydrogen projects in South Australia – Renewables SA, http://www.renewablessa.sa.gov.au/topic/hydrogen/hydrogen-projects , (accessed 24 November 2020)

Air Products, Air Products, ACWA Power and NEOM Sign Agreement for $5 Billion Production Facility in NEOM Powered by Renewable Energy for Production and Export of Green Hydrogen to Global Markets, https://newsroom.neom.com/air-products-acwa-power-and-neom-sign-agreement-for-5-billion-production-facility-in-neom-powered-by-renewable-energy-for-production-and-export-of-green-hydrogen-to-global-markets-321553%0Ahttps://www.airproducts.com/company/news-c , (accessed 15 February 2021)

T. Brown , Ammonia plant revamp to decarbonize: Yara Pilbara, https://ammoniaindustry.com/ammonia-plant-revamp-to-decarbonize-yara-pilbara/ , (accessed 6 November 2019)

Carmo, 2013, Int. J. Hydrogen Energy, 38, 4901, 10.1016/j.ijhydene.2013.01.151

Schmidt, 2017, Int. J. Hydrogen Energy, 42, 30470, 10.1016/j.ijhydene.2017.10.045

D. Peterson , J.Vickers and D.DeSantis , Hydrogen Production Cost From PEM Electrolysis – 2019 , 2020, https://www.hydrogen.energy.gov/pdfs/19009_h2_production_cost_pem_electrolysis_2019.pdf

Yandulov, 2003, Science, 301, 76, 10.1126/science.1085326

Wickramasinghe, 2017, J. Am. Chem. Soc., 139, 9132, 10.1021/jacs.7b04800

Lee, 2010, Nat. Chem., 2, 558, 10.1038/nchem.660

Thompson, 2017, J. Am. Chem. Soc., 139, 15312, 10.1021/jacs.7b09364

Foster, 2018, Nat. Catal., 1, 490, 10.1038/s41929-018-0092-7

Anderson, 2013, Nature, 501, 84, 10.1038/nature12435

Schrock, 2005, Acc. Chem. Res., 38, 955, 10.1021/ar0501121

Shi, 2020, Adv. Energy Mater., 10, 1

Vojvodic, 2014, Chem. Phys. Lett., 598, 108, 10.1016/j.cplett.2014.03.003

Yang, 2021, Energy Environ. Sci., 14, 672, 10.1039/D0EE02263B

Ren, 2021, Energy Environ. Sci., 14, 1176, 10.1039/D0EE03596C

Garagounis, 2016, Catal. Today, 286, 2

Xu, 2020, Nano Energy, 69, 104469, 10.1016/j.nanoen.2020.104469

Suryanto, 2019, Nat. Catal., 2, 290, 10.1038/s41929-019-0252-4

Wang, 2020, ChemElectroChem, 7, 1067, 10.1002/celc.201901967

Hao, 2019, Nat. Catal., 2, 448, 10.1038/s41929-019-0241-7

Zhou, 2017, Energy Environ. Sci., 10, 2516, 10.1039/C7EE02716H

Marnellos, 1998, Science, 282, 98, 10.1126/science.282.5386.98

Skodra, 2009, Solid State Ionics, 180, 1332, 10.1016/j.ssi.2009.08.001

Lazouski, 2019, Joule, 3, 1127, 10.1016/j.joule.2019.02.003

Lazouski, 2020, Nat. Catal., 3, 463, 10.1038/s41929-020-0455-8

Erlenmeyer, 1930, Helv. Chim. Acta, 13, 1228, 10.1002/hlca.19300130604

Tsuneto, 1993, Chem. Lett., 851, 10.1246/cl.1993.851

Tsuneto, 1994, J. Electroanal. Chem., 367, 183, 10.1016/0022-0728(93)03025-K

Kim, 2018, ChemSusChem, 11, 120, 10.1002/cssc.201701975

Jiao, 2018, Adv. Mater., 31, 1805173, 10.1002/adma.201805173

Andersen, 2020, Energy Environ. Sci., 13, 4291, 10.1039/D0EE02246B

Andersen, 2019, Nature, 570, 504, 10.1038/s41586-019-1260-x

L. Irlam , Global Costs of Carbon Capture and Storage, 2017, https://www.globalccsinstitute.com/archive/hub/publications/201688/global-ccs-cost-updatev4.pdf

T. Brown , The capital intensity of small-scale ammonia plants, https://ammoniaindustry.com/the-capital-intensity-of-small-scale-ammonia-plants/ , (accessed 6 November 2019)

G. Soloveichik , Renewable Energy to Fuels Through Utilization of EnergyDense Liquids (REFUEL) Program Overview , 2016, https://arpa-e.energy.gov/sites/default/files/documents/files/REFUEL_ProgramOverview.pdf

Matsubara, 2017, Science, 356, 141, 10.1126/science.aal1288

Jouny, 2018, Ind. Eng. Chem. Res., 57, 2165, 10.1021/acs.iecr.7b03514

Spurgeon, 2018, Energy Environ. Sci., 11, 1536, 10.1039/C8EE00097B

Shaner, 2016, Energy Environ. Sci., 9, 2354, 10.1039/C5EE02573G

Sutherland, 2020, Joule, 4, 298, 10.1016/j.joule.2020.01.019

Rugolo, 2012, Energy Environ. Sci., 5, 7151, 10.1039/c2ee02542f

J. Lof , M.Sc , K.Mcelheran , M.Narendran , S.Sit , N.Belanger , B.Straatman , S.Sit and D. B.Layzell , The Future of Freight Part B: Assessing Zero Emission Diesel Fuel Alternatives for Freight Transportation in Alberta , 2019, vol. 4. https://www.cesarnet.ca/sites/default/files/pdf/cesar-scenarios/CESAR-Scenarios-Future_of_Freight_B.pdf

O’Hare, 1975, J. Chem. Thermodyn., 7, 13, 10.1016/0021-9614(75)90075-0

Lithium Hydroxide, https://www.americanelements.com/lithium-hydroxide-1310-65-2 , (accessed 15 January 2020)

U.S. Energy Information Administration, Annual Energy Outlook 2020 with projections to 2050 , Washinton, DC, 2020, https://www.eia.gov/outlooks/aeo/pdf/AEO2020FullReport.pdf

D. Sawyer and N.Melton , Taking Stock of Canada's Electricity Mix and Greenhouse Gas Emissions to 2030 , 2017, https://canwea.ca/wp-content/uploads/2017/12/Renewables90PercentBy2030.pdf

National Energy Board, Canada's Renewable Power Landscape 2017 – Energy Market Analysis, https://www.cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2017cndrnwblpwr/ghgmssn-eng.html

Detz, 2018, Energy Environ. Sci., 11, 1653, 10.1039/C8EE00111A

Kittner, 2017, Nat. Energy, 2, 1, 10.1038/nenergy.2017.125

Lan, 2013, Sci. Rep., 3, 1, 10.1038/srep01145

Lan, 2015, Faraday Discuss., 182, 353, 10.1039/C5FD00033E

T. Brown , Green Ammonia: Haldor Topsoe's Solid Oxide electrolyzer, https://ammoniaindustry.com/haldor-topsoes-solid-oxide-electrolyzer/ , (accessed 11 February 2021)

M. Appl , Ammonia, 2. Production Processes , Wiley-VCH , 2011

García de Arquer, 2020, Science, 367, 661, 10.1126/science.aay4217

Amar, 2011, J. Solid State Electrochem., 15, 1845, 10.1007/s10008-011-1376-x

Iwahara, 1981, Solid State Ionics, 3–4, 359, 10.1016/0167-2738(81)90113-2

Kyriakou, 2020, Joule, 4, 142, 10.1016/j.joule.2019.10.006

Sun, 2021, Energy Environ. Sci., 14, 865, 10.1039/D0EE03769A

Han, 2020, Nat. Nanotechnol., 1

Kolster, 2017, Energy Environ. Sci., 10, 2594, 10.1039/C7EE02102J

Buttler, 2018, Renewable Sustainable Energy Rev., 82, 2440, 10.1016/j.rser.2017.09.003

de Chalendar, 2019, Proc. Natl. Acad. Sci. U. S. A., 116, 25497, 10.1073/pnas.1912950116

Artz, 2018, Chem. Rev., 118, 434, 10.1021/acs.chemrev.7b00435

National Energy Board, Canada's Renewable Energy Market Analysis 2017, 2017, https://www.cer-rec.gc.ca/en/data-analysis/energy-commodities/electricity/report/2017-canadian-renewable-power/2017cndrnwblpwr-eng.pdf