Can pollen provision mitigate competition interactions between three phytoseiid predators of Tetranychus urticae under future climate change conditions?

Biological Control - Tập 165 - Trang 104789 - 2022
Pablo Urbaneja-Bernat1, Josep A. Jaques1
1Departament de Ciències Agràries i del Medi Natural, Unitat Associada d’Entomologia UJI-IVIA, Universitat Jaume I, UJI, Campus del Riu Sec 12071, Castelló de la Plana, Spain

Tài liệu tham khảo

Abad-Moyano, 2009, Comparative life-history traits of three phytoseiid mites associated with Tetranychus urticae (Acari: Tetranychidae) colonies in clementine orchards in eastern Spain: Implications for biological control, Exp. Appl. Acarol., 47, 121, 10.1007/s10493-008-9197-z Abad-Moyano, 2010, Efficacy of Neoseiulus californicus and Phytoseiulus persimilis in suppression of Tetranychus urticae in young clementine plants, Exp. Appl. Acarol., 50, 317, 10.1007/s10493-009-9318-3 Abad-Moyano, 2010, Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus, Exp. Appl. Acarol., 50, 23, 10.1007/s10493-009-9278-7 Agathokleous, 2020, Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity, Sci. Adv., 6, 1, 10.1126/sciadv.abc1176 Aguilar-Fenollosa, 2011, Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (II): Top-down regulation mechanisms, Biol. Control, 59, 171, 10.1016/j.biocontrol.2011.06.012 Aguilar-Fenollosa, 2011, Effect of ground-cover management on spider mites and their phytoseiid natural enemies in clementine mandarin orchards (I): Bottom-up regulation mechanisms, Biiological Control, 59, 158, 10.1016/j.biocontrol.2011.06.013 Aguilar-Fenollosa, 2014, Can we forecast the effects of climate change on entomophagous biological control agents?, Pest Manag. Sci., 70, 853, 10.1002/ps.3678 Aguilar-Fenollosa, 2011, Efficacy and economics of ground cover management as a conservation biological control strategy against Tetranychus urticae in clementine mandarin orchards, Crop Prot., 30, 1328, 10.1016/j.cropro.2011.05.011 Aguilar-Fenollosa, 2012, Does host adaptation of Tetranychus urticae populations in clementine orchards with a Festuca arundinacea cover contribute to a better natural regulation of this pest mite?, Entomol. Exp. Appl., 144, 181, 10.1111/j.1570-7458.2012.01276.x Anderson, 2004, Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers, Trends Ecol. Evol., 19, 535, 10.1016/j.tree.2004.07.021 Araújo, 2007, The importance of biotic interactions for modelling species distributions under climate change, Glob. Ecol. Biogeogr., 16, 743, 10.1111/j.1466-8238.2007.00359.x Aucejo-Romero, 2004, Effects of NaCl-stressed citrus plants on life-history parameters of Tetranychus urticae (Acari: Tetranychidae), Exp. Appl. Acarol., 33, 55, 10.1023/B:APPA.0000030026.77800.0c Bannerman, J.A., Gillespie, D.R., Roitberg, B.D., 2011. The impacts of extreme and fluctuating temperatures on trait-mediated indirect aphid-parasitoid interactions. Ecol. Entomol. 36, 490–498. Beltrà, 2017, Provisioning of food supplements enhances the conservation of phytoseiid mites in citrus, Biol. Control, 115, 18, 10.1016/j.biocontrol.2017.09.007 Ciais, 2005, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, 437, 529, 10.1038/nature03972 Cock, 2013, The implications of climate change for positive contributions of invertebrates to world agriculture, CAB Rev.: Perspect. Agric. Vet. Sci. Nutr. Nat. Resour., 10.1079/PAVSNNR20138028 Cruz-Miralles, 2021, Plant-feeding may explain why the generalist predator Euseius stipulatus does better on less defended citrus plants but Tetranychus-specialists Neoseiulus californicus and Phytoseiulus persimilis do not, Exp Appl Acarol, 83, 167, 10.1007/s10493-020-00588-x De Boeck, H.J., Dreesen, F.E., Janssens, I.A., Nijs, I., 2010. Climatic characteristics of heat waves and their simulation in plant experiments. Glob. Chang. Biol. 16, 1992–2000. Deutsch, 2018, Increase in crop losses to insect pests in a warming climate, Science (80-), 361, 916, 10.1126/science.aat3466 Diffenbaugh, 2007, Heat stress intensification in the Mediterranean climate change hotspot, Geophys. Res. Lett., 34, 1, 10.1029/2007GL030000 Dunson, 1991, The role of abiotic factors in community organization, American Naturalist, 138, 1067, 10.1086/285270 Evans, 2013, Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch, J. Appl. Entomol., 137, 383, 10.1111/jen.12028 Etienne, 2021, Food and habitat supplementation promotes predatory mites and enhances pest control, Biol. Control, 159, 104604, 10.1016/j.biocontrol.2021.104604 FAO (2017) FAOSTAT. Food and agriculture organization of the United Nations. http://www.fao.org/faost at/en/#data/QC. Accessed 21 March 2021. García-Tejero, 2012, Impact of water stress on citrus yield, Agron. Sustain. Dev., 32, 651, 10.1007/s13593-011-0060-y Gillespie, 2012, Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species, Oikos, 121, 149, 10.1111/j.1600-0706.2011.19512.x Giorgi, 2008, Climate change projections for the Mediterranean region, Glob. Planet Change, 63, 90, 10.1016/j.gloplacha.2007.09.005 González-Fernández, 2009, Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards, Bull. Entomol. Res., 99, 433, 10.1017/S000748530800641X González‐Tokman, 2020, Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world, Biol. Rev., 95, 802, 10.1111/brv.12588 Gualdi, 2012, The CIRCE simulations: a new set of regional climate change projections performed with a realistic representation of the Mediterranean Sea, Bull. Am. Meteorol. Soc. Guzmán, 2016, Temperature-specific competition in predatory mites: Implications for biological pest control in a changing climate, Agric. Ecosyst. Environ., 216, 89, 10.1016/j.agee.2015.09.024 Hance, 2007, Impact of extreme temperatures on parasitoids in a climate change perspective, Annu. Rev. Entomol., 52, 107, 10.1146/annurev.ento.52.110405.091333 Hansen, 2012, Perception of climate change, Proc. Natl. Acad. Sci., 109, E2415, 10.1073/pnas.1205276109 Hegland, S.J., Nielsen, A., Lázaro, A., Bjerknes, A.L., Totland, Orjan, 2009. How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195. Holt, 1977, Predation, apparent competition, and the structure of prey communities, Theor. Popul Biol., 12, 197, 10.1016/0040-5809(77)90042-9 Hooper, 2012, A global synthesis reveals biodiversity loss as a major driver of ecosystem change, Nature, 486, 105, 10.1038/nature11118 Intergovernmental Panel on Climate Change (IPCC), 2014, Summary for policymakers, 1 Intergovernmental Panel on Climate Change (IPCC). 2018. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, Switzerland. Retrieved from www.ipcc.ch. Jacob, 2014, EURO-CORDEX: New high-resolution climate change projections for European impact research, Reg. Environ. Chang, 14, 563, 10.1007/s10113-013-0499-2 Janssen, 2015, Alternative food and biological control by generalist predatory mites: the case of Amblyseius swirskii, Exp. Appl. Acarol., 65, 413, 10.1007/s10493-015-9901-8 Janssen, 1992, Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites, Exp. Appl. Acarol., 14, 233, 10.1007/BF01200566 Jeffs, 2013, Effects of climate warming on host-parasitoid interactions, Ecol. Entomol., 38, 209, 10.1111/een.12026 Jentsch, 2007, A new generation of climate-change experiments: events, not trends, Front. Ecol. Environ. preprint, 1 Luedeling, E., Steinmann, K.P., Zhang, M., Brown, P.H., Grant, J., Girvetz, E.H., 2011. Climate change effects on walnut pests in California. Glob. Chang Biol. 17, 228–238. Maoz, 2011, Biocontrol of persea mite, Oligonychus perseae, with an exotic spider mite predator and an indigenous pollen feeder, Biol. Control, 59, 147, 10.1016/j.biocontrol.2011.07.014 Martínez-ferrer, 2006, Approaches for sampling the twospotted spider mite (Acari: Tetranychidae) on clementines in Spain, J. Econ. Entomol., 99, 1490, 10.1603/0022-0493-99.4.1490 Mcmurtry, 2013, Revision of the lifestyles of phytoseiid mites (Acari : Phytoseiidae), Syst. Appl. Acarol., 18, 297 Messelink, 2008, Biological control of thrips and whiteflies by a shared predator: two pests are better than one, Biological Control, 44, 372, 10.1016/j.biocontrol.2007.10.017 Montserrat, 2013, Pollen supply promotes, but high temperatures demote, predatory mite abundance in avocado orchards, Agric. Ecosyst. Environ., 164, 155, 10.1016/j.agee.2012.09.014 Montserrat, 2012, Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population, Oikos, 121, 67, 10.1111/j.1600-0706.2011.19369.x Montserrat, 2008, Patterns of exclusion in an intraguild predator–prey system depend on initial conditions, J. Anim. Ecol., 77, 624, 10.1111/j.1365-2656.2008.01363.x Montserrat, 2013, Can climate change jeopardize predator control of invasive herbivore species? A case study in avocado agro-ecosystems in Spain, Exp. Appl. Acarol., 59, 27, 10.1007/s10493-012-9560-y Navarra, 2013 Nomikou, 2010, Pollen subsidies promote whitefly control through the numerical response of predatory mites, Biocontrol, 55, 253, 10.1007/s10526-009-9233-x Parmesan, 2003, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421, 37, 10.1038/nature01286 Pascual-Ruiz, 2014, Economic threshold for Tetranychus urticae (Acari: Tetranychidae) in clementine mandarins Citrus clementina, Exp. Appl. Acarol., 62, 337, 10.1007/s10493-013-9744-0 Pérez-Sayas, 2015, Disentangling mite predator-prey relationships by multiplex PCR, Mol. Ecol. Resour., 15, 1330, 10.1111/1755-0998.12409 Pina, 2012, Effect of pollen quality on the efficacy of two different lifestyle predatory mites against Tetranychus urticae in citrus, Biol. Control, 61, 176, 10.1016/j.biocontrol.2012.02.003 Pozzebon, A., Loeb, G.M., Duso, C., 2009. Grape powdery mildew as a food source for generalist predatory mites occurring in vineyards: Effects on life-history traits. Ann. Appl. Biol. 155, 81–89. Rodríguez-Gamir, 2010, Citrus rootstock responses to water stress, Sci. Hortic. (Amsterdam), 126, 95, 10.1016/j.scienta.2010.06.015 Schausberger, 2000, Nutritional benefits of intraguild predation and cannibalism among generalist and specialist phytoseiid mites, Ecol. Entomol., 25, 473, 10.1046/j.1365-2311.2000.00284.x Schleuning, 2020, Trait-based assessments of climate-change impacts on interacting species, Trends Ecol. Evol., 35, 319, 10.1016/j.tree.2019.12.010 Sentis, 2013, Effects of simulated heat waves on an experimental plant-herbivore-predator food chain, Glob. Chang. Biol., 19, 833, 10.1111/gcb.12094 Stireman, 2005, Climatic unpredictability and parasitism of caterpillars: Implications of global warming, Proc. Natl. Acad. Sci., 102, 17384, 10.1073/pnas.0508839102 Sykes, M.T., 2009. Climate Change Impacts: Vegetation, in: Encyclopedia of Life Sciences. Thierry, 2019, Mechanisms structuring host–parasitoid networks in a global warming context: a review, Ecol. Entomol., 44, 581, 10.1111/een.12750 Thomson, 2010, Predicting the effects of climate change on natural enemies of agricultural pests, Biol. Control, 52, 296, 10.1016/j.biocontrol.2009.01.022 Toyoshima, 2004, Intraspecific variation of reproductive characteristics of Amblyseius californicus (McGregor) (Acari: Phytoseiidae), Appl. Entomol. Zool., 39, 351, 10.1303/aez.2004.351 Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A., 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363. Uleberg, 2014, Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation, Clim. Change, 122, 27, 10.1007/s10584-013-0983-1 Ummenhofer, 2017, Extreme weather and climate events with ecological relevance: A review, Philos. Trans. R. Soc. B: Biol. Sci., 372, 20160135, 10.1098/rstb.2016.0135 Urbaneja-Bernat, 2019, Can interactions among predators alter the natural regulation of an herbivore in a climate change scenario? The case of Tetranychus urticae and its predators in citrus, J. Pest. Sci., 92, 1149, 10.1007/s10340-019-01114-8 Urbaneja‐Bernat, 2021, Effect of pollen provision on life-history parameters of phytoseiid predators under hot and dry environmental conditions, J. Appl. Entomol., 145, 191, 10.1111/jen.12845 Vela, 2017, Mite diversity (Acari: Tetranychidae, Tydeidae, Iolinidae, Phytoseiidae) and within-tree distribution in citrus orchards in southern Spain, with special reference to Eutetranychus orientalis, Exp. Appl. Acarol., 73, 191, 10.1007/s10493-017-0180-4 Winston, 1960, Saturated solutions for the control of humidity in biological research, Ecology, 41, 232, 10.2307/1931961