Can plasticity make spatial structure irrelevant in individual-tree models?
Tóm tắt
Distance-dependent individual-tree models have commonly been found to add little predictive power to that of distance-independent ones. One possible reason is plasticity, the ability of trees to lean and to alter crown and root development to better occupy available growing space. Being able to redeploy foliage (and roots) into canopy gaps and less contested areas can diminish the importance of stem ground locations. Plasticity was simulated for 3 intensively measured forest stands, to see to what extent and under what conditions the allocation of resources (e.g., light) to the individual trees depended on their ground coordinates. The data came from 50 × 60 m stem-mapped plots in natural monospecific stands of jack pine, trembling aspen and black spruce from central Canada. Explicit perfect-plasticity equations were derived for tessellation-type models. Qualitatively similar simulation results were obtained under a variety of modelling assumptions. The effects of plasticity varied somewhat with stand uniformity and with assumed plasticity limits and other factors. Stand-level implications for canopy depth, distribution modelling and total productivity were examined. Generally, under what seem like conservative maximum plasticity constraints, spatial structure accounted for less than 10% of the variance in resource allocation. The perfect-plasticity equations approximated well the simulation results from tessellation models, but not those from models with less extreme competition asymmetry. Whole-stand perfect plasticity approximations seem an attractive alternative to individual-tree models.
Tài liệu tham khảo
Amateis RL, Burkhart HE: Rotation-age results from a loblolly pine spacing trial. South J Appl Forestry 2012, 36(1):11–18. doi:10.5849/sjaf.10–038 doi:10.5849/sjaf.10-038 10.5849/sjaf.10-038
Baddeley A, Turner R: Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 2005, 12(6):1–42. [http://www.jstatsoft.org/v12/i06] http://www.jstatsoft.org/v12/i06. http://www.jstatsoft.org/v12/i06.
Beekhuis J: Crown depth of radiata pine in relation to stand density and height. N Z J Forestry 1965, 10(1):43–61. [http://www.nzjf.org/free_issues/NZJF10_1_1965/4B04540F-06D3-4A4C-B26B-0BD3510F36EE.pdf] http://www.nzjf.org/free_issues/NZJF10_1_1965/4B04540F-06D3–4A4C-B26B-0BD3510F36EE.pdf. http://www.nzjf.org/free_issues/NZJF10_1_1965/4B04540F-06D3-4A4C-B26B-0BD3510F36EE.pdf.
Brisson J, Reynolds JF: The effect of neighbors on root distribution in a creosotebush ( Larrea tridentata ) population. Ecology 1994, 75: 1693–1702. doi:10.2307/1939629 doi:10.2307/1939629 10.2307/1939629
Brown GS: The importance of stand density in pruning prescriptions. Empire Forestry Rev 1962, 41(3):246–257.
Burkhart HE, Tomé M: Modeling forest trees and stands. Springer, Dordrecht, The Netherlands; 2012.
Dudek A, Ek AR: A bibliography of worldwide literature on individual tree based forest stand growth models. Staff Paper Series Number 12, University of Minnesota, Department of Forest Resources; 1980.
Fish H, Lieffers VJ, Silins U, Hall RJ: Crown shyness in lodgepole pine stands of varying stand height, density, and site index in the upper foothills of Alberta. Can J Forest Res 2006, 36(9):2104–2111. doi:10.1139/x06–107 doi:10.1139/x06-107 10.1139/x06-107
García, O (1990) Growth of thinned and pruned stands. In: James RN Tarlton GL (eds)New Approaches to Spacing and Thinning in Plantation Forestry: Proceedings of a IUFRO Symposium, 10–14 April 1989, pp. 84-97, Rotorua, New Zealand, Ministry of Forestry, FRI Bulletin No. 151. ., [http://web.unbc.ca/garcia/publ/thinned.pdf]
García O: A generic approach to spatial individual-based modelling and simulation of plant communities. Int J Math Comput Forestry Nat Res Sci 2014, 6(1):36–47. [http://www.mcfns.com/index.php/Journal/article/view/6_36] http://www.mcfns.com/index.php/Journal/article/view/6_36. http://www.mcfns.com/index.php/Journal/article/view/6_36.
García O: Scale and spatial structure effects on tree size distributions: Implications for growth and yield modelling. Can J Forest Res 2006, 36(11):2983–2993. doi:10.1139/x06–116 doi:10.1139/x06-116 10.1139/x06-116
Gates DJ, O’Connor AJ, Westcott M: Partitioning the union of disks in plant competition models. Proc R Soc Lond A 1979, 367: 59–79. doi:10.1098/rspa.1979.0076 doi:10.1098/rspa.1979.0076 10.1098/rspa.1979.0076
Gatziolis D, Fried JS, Monleon VS: Challenges to estimating tree height via LiDAR in closed-canopy forests: A parable from Western Oregon. Forest Sci 2010, 56(2):139–155.
Goudie JW, Polsson KR, Ott PK: An empirical model of crown shyness for lodgepole pine ( Pinus contorta var. latifolia [Engl.] Critch.) in British Columbia. Forest Ecol Manag 2009, 257(1):321–331. doi:10.1016/j.foreco.2008.09.005 doi:10.1016/j.foreco.2008.09.005 10.1016/j.foreco.2008.09.005
Grimm V: Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Model 1999, 115(2–3):129–148. doi:10.1016/S0304–3800(98)00188–4 doi:10.1016/S0304-3800(98)00188-4 10.1016/S0304-3800(98)00188-4
Grimm V, Railsback SF: Individual-based modeling and ecology. Princeton University Press, Princeton and Oxford; 2005.
Longuetaud, F, Piboule A, Wernsdörfer H, Collet C (2013) Crown plasticity reduces inter-tree competition in a mixed broadleaved forest. Eur J Forest Res: 1–14. doi:10.1007/s10342–013–0699–9.
Milner P, Gillespie CS, Wilkinson DJ: Moment closure approximations for stochastic kinetic models with rational rate laws. Math Biosci 2011, 231(2):99–104. doi:10.1016/j.mbs.2011.02.006 doi:10.1016/j.mbs.2011.02.006 10.1016/j.mbs.2011.02.006
Mitchell KJ: Simulation of the growth of even-aged stands of white spruce. School of Forestry Bulletin No. 75, Yale University, New Haven, CT; 1969.
Dynamics and simulated yield of Douglas-fir. Forest Science Monograph 17, Society of American Foresters, Washington, D. C; 1975.
Muth CC, Bazzaz FA: Tree canopy displacement and neighborhood interactions. Can J Forest Res 2003, 33(7):1323–1330. doi:10.1139/x03–045 doi:10.1139/x03-045 10.1139/x03-045
Murrell DJ, Dieckmann U, Law R: On moment closures for population dynamics in continuous space. J Theor Biol 2004, 229(3):421–432. doi:10.1016/j.jtbi.2004.04.013 doi:10.1016/j.jtbi.2004.04.013 10.1016/j.jtbi.2004.04.013
Newnham RM, Smith JHG: Development and testing of stand models for Douglas-fir and lodgepole pine. Forestry Chron 1964, 40: 494–504. doi:10.5558/tfc40494–4 doi:10.5558/tfc40494-4 10.5558/tfc40494-4
Pacala SW, Canham CD, Silander JJA: Forest models defined by field measurements: I. The design of a northeastem forest simulator. Can J Forest Res 1993, 23: 1980–1988. doi:10.1038/348027a0 doi:10.1038/348027a0 10.1139/x93-249
Parker GA, Smith JM: Optimality theory in evolutionary biology. Nature 1990, 348(6296):27–33. doi:10.1038/348027a0 doi:10.1038/348027a0 10.1038/348027a0
Picard N, Franc A: Approximating spatial interactions in a model of forest dynamics. FBMIS 2004, 1: 91–103. [http://cms1.gre.ac.uk/conferences/iufro/fbmis/A/4_1_PicardN_1.pdf] http://cms1.gre.ac.uk/conferences/iufro/fbmis/A/4_1_PicardN_1.pdf. http://cms1.gre.ac.uk/conferences/iufro/fbmis/A/4_1_PicardN_1.pdf.
Reventlow CDF: A Treatise of Forestry. Society of Forest History, Horsholm, Denmark (English translation, 1960); 1879.
Rich, PM, Fournier R (1999) BOREAS TE-23 Map Plot Data, Data set available on-line () from OakRidgeNational Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA., [http://www.daac.ornl.gov]
Rouvinen S, Kuuluvainen T: Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest. Can J Forest Res 1997, 27(6):890–902. doi:10.1139/x97–012 doi:10.1139/x97-012 10.1139/x97-012
Schröter M, Härdtle W, Oheimb G: Crown plasticity and neighborhood interactions of European beech ( Fagus sylvatica L.) in an old-growth forest. Eur J Forest Res 2012, 131(3):787–798. doi:10.1007/s10342–011–0552-y doi:10.1007/s10342-011-0552-y 10.1007/s10342-011-0552-y
Seidel D, Leuschner C, Müller A, Krause B: Crown plasticity in mixed forests—Quantifying asymmetry as a measure of competition using terrestrial laser scanning. Forest Ecol Manage 2011, 261(11):2123–2132. doi:10.1016/j.foreco.2011.03.008 doi:10.1016/j.foreco.2011.03.008 10.1016/j.foreco.2011.03.008
Staebler, GR (1951) Growth and spacing in an even-aged stand of Douglas-fir. Master’s thesis, School of Natural Resources, University of Michigan.
Stoll P, Schmid B: Plant foraging and dynamic competition between branches of Pinus sylvestris in contrasting light environments. J Ecol 1998, 86(6):934–945. doi:10.1046/j.1365–2745.1998.00313.x doi:10.1046/j.1365-2745.1998.00313.x 10.1046/j.1365-2745.1998.00313.x
Strigul N, Pristinski D, Purves D, Dushoff J, Pacala S: Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 2008, 78(4):523–545. doi:10.1890/08–0082.1 doi:10.1890/08-0082.1 10.1890/08-0082.1
Umeki K: A comparison of crown asymmetry between Picea abies and Betula maximowicziana . Can J Forest Res 1995, 25(11):1876–1880. doi:10.1139/x95–202. doi:10.1139/x95-202. 10.1139/x95-202
Vacchiano G, Castagneri D, Meloni F, Lingua E, Motta R: Point pattern analysis of crown-to-crown interactions in mountain forests. Procedia Environ Sci 2011, 7(0):269–274. doi:10.1016/j.proenv.2011.07.047 doi:10.1016/j.proenv.2011.07.047 10.1016/j.proenv.2011.07.047
Valentine HT, Ludlow AR, Furnival GM: Modeling crown rise in even-aged stands of Sitka spruce or loblolly pine. Forest Ecol Manage 1994, 69(1–3):189–197. doi:10.1016/0378–1127(94)90228–3 doi:10.1016/0378-1127(94)90228-3 10.1016/0378-1127(94)90228-3
Valentine HT, Amateis RL, Gove JH: Crown-rise and crown-length dynamics: application to loblolly pine. Forestry 2013, 86(3):371–375. doi:10.1093/forestry/cpt007 doi:10.1093/forestry/cpt007 10.1093/forestry/cpt007
Weiskittel AR, Hann DW, Kershaw JAJ, Vanclay JK: Forest growth and yield modeling. Wiley-Blackwell, Chichester, UK; 2011.
Wyszomirski T: Simulation model of the growth of competing individuals of a plant population. Ekologia Polska 1983, 31(1):73–92.