Can microRNA become next-generation tools in molecular diagnostics and therapeutics? A systematic review

Vandana Saini1, Rajni Dawar1, Shilpa Suneja1, Sukanya Gangopadhyay1, Charanjeet Kaur1
1Department of Biochemistry, Vardhmann Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India

Tóm tắt

AbstractBackgroundMicroRNAs (miRNAs) represent a novel class of single-stranded RNA molecules of 18–22 nucleotides that serve as powerful tools in the regulation of gene expression. They are important regulatory molecules in several biological processes.Main bodyAlteration in the expression profiles of miRNAs have been found in several diseases. It is anticipated that miRNA expression profiling can become a novel diagnostic tool in the future.Hence, this review evaluates the implications of miRNAs in various diseases and the recent advances in miRNA expression level detection and their target identification. A systematic approach to review existing literature available on databases such as Medline, PubMed, and EMBASE was conducted to have a better understanding of mechanisms mediating miRNA-dependent gene regulation and their role as diagnostic markers and therapeutic agents.ConclusionA clear understanding of the complex multilevel regulation of miRNA expression is a prerequisite to explicate the origin of a wide variety of diseases. It is understandable that miRNAs offer potential targets both in diagnostics and therapeutics of a multitude of diseases. The inclusion of specific miRNA expression profiles as biomarkers may lead to crucial advancements in facilitating disease diagnosis and classification, monitoring its prognosis, and treatment. However, standardization of methods has a pivotal role in the success of extensive use of miRNA expression profiling in routine clinical settings.

Từ khóa


Tài liệu tham khảo

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

Lin X, Zhan J-K, Wang Y-J, Tan P, Chen Y-Y, Deng H-Q et al (2016) Function, role, and clinical application of microRNAs in vascular aging. BioMed Res Int. https://doi.org/10.1155/2016/6021394

MacFarlane L-A, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8:19–32

Moher D, Liberati A, Tetzlaff J, Altman DG (2009) The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097

De Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35:872–878

Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773–2785

Xie M, Li M, Vilborg A, Lee N, Shu MD, Yartseva V et al (2013) Mammalian 5′- capped microRNA precursors that generate a single microRNA. Cell 155:1568–1580

Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22:20–28

Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M (2016) Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64:565–579

Kartha RV, Subramanian S (2014) Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet 5:8

Braun JE, Truffault V, Boland A, Huntzinger E, Chang CT, Haas G et al (2012) A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol 19:1324–1331

Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonqueze O et al (2012) MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep 2:842

Brien JO, Hayder H, Zayed Y, Peng C (2018) Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

Munker R, Calin GA (2011) MicroRNA profiling in cancer. Clin Sci (Lond) 121:141–158

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, Van Rooij E et al (2010) Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 18:282–293

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo Y (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755–11760

Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

Chen L, Cui B, Zhang S, Chen G, Croce CM, Kipps TJ (2008) Association between the proficiency of B-cell receptor signaling and the relative expression levels of ZAP-70, SHIP-1, and Mir-155 in chronic lymphocytic leukemia. Blood 112:3155

Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109:e1695–e1704

Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030

Bui TV, Mendell JT (2010) Myc: maestro of microRNAs. Genes Cancer 1:568–575

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by myc contributes to tumorigenesis. Nat Genet 40:43–50

Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D, Hung MC (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13:317–323

Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D (2010) Lowenstein CJ P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107:6334–6339

Bushati N, Cohen SM (2008) MicroRNAs in neurodegeneration. Curr Opin Neurobiol 18:292–296

Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18:130–138

Karkhane M, Lashgarian HE, Hormozi M, Fallahi S, Cheraghipour K, Marzban A (2020) Oncogenesis and tumor inhibition by microRNAs and its potential therapeutic applications: a systematic review. MicroRNA 9:198–215

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23:e2152–e2165

Ferracin M, Pedriali M, Veronese A, Zagatti B, Gafa R, Magri E, Lunardi M, Munerato G et al (2011) MicroRNA profiling for the identification of cancers with unknown primary tissue-of-origin. J Pathol 225:43–53

Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotech 26:462–469

Schwarbzbach AE, Adai AT, Lee LS, Conwell DL, Andruss BF (2011) Development of a miRNA-based diagnostic assay for pancreatic ductal adenocarcinoma. Expert Rev Mol Diagn 11(3):249–257

O’Neill LJ (2008) A renaissance of interest innate immunity: will new treatments for rheumatoid arthritis emerge? Future Rheumatol 3:203–205

Eyileten C, Wicik Z, Rosa SD, Mirowska-Guzel D, Soplinska A, Indolfi C et al (2018) MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke—a comprehensive review and bioinformatic analysis. Cells 7:249

Li Y, Maegdefessel L (2016) My heart will go on-beneficial effects of anti-MiR-30 after myocardial infarction. Ann Transl Med 4:144

Gacon J, Kablak-Ziembicka A, Stepien E, Enguita FJ, Karch I, Derlaga B et al (2016) Decision-making microRNAs (miR-124, -133a/b, -34a and -134) in patients with occluded target vessel in acute coronary syndrome. Kardiol Pol 74:280–288

Zeller T, Keller T, Ojeda F, Reichlin T, Twerenbold R, Tzikas S et al (2014) Assessment of microRNAs in patients with unstable angina pectoris. Eur Heart J 35:2106–2114

Goren Y, Meiri E, Hogan C, Mitchell H, Lebanony D, Salman N et al (2014) Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am J Cardiol 113:976–981

Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

Egyed B, Kutszegi N, Sagi JC, Gezsi A, Rzepiel A, Visnovitz T et al (2020) MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med 18:250

Zonneveld AJ, Au YW, Stam W, Gelderen SV, Rotmans JI, Peter MT, Deen et al (2020) MicroRNA-132 regulates salt-dependent steady-state renin levels in mice. Commun Biol 3:238

Liu Z, Zhang XH, Callejas-Diaz B, Mullol J (2016) MicroRNA in united airway diseases. Int J Mol Sci 17(5):716

Dissanayake E, Inoue Y (2016) MicroRNAs in allergic disease. Curr Allergy Asthma Rep 16:67

Mehta MD, Liu PT (2014) MicroRNAs in mycobacterial disease: friend or foe? Front Genet 5:231

Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D et al (2009) MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A 106:5330–5335

Xiao B, Wang Y, Li W, Baker M, Guo J, Corbet K et al (2013) Plasma microRNA signature as a non-invasive biomarker for acute graft-versus-host disease. Blood 122(19):3365–3375

Bohm-Hofstatter H, Tschernutter M, Kunert R (2010) Comparison of hybridization methods and real-time PCR: their value in animal cell line characterization. Appl Microbiol Biotechnol 87:419–425

Reue K (1998) mRNA quantitation techniques: considerations for experimental design and application. J Nutr 128:2038–2044

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

Kang K, Peng X, Luo J, Gou D (2012) Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J Anim Sci Biotechnol 3:4

Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369

Jiang L, Duan D, Shen Y et al (2012) Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. Biosens Bioelectron 34:291–295

Duan D, Zheng KX, Chen Y et al (2011) Label-free high-throughput microRNA expression profiling from total RNA. Nucleic Acids Res 39:e154

Vedarethinam I, Shah P, Dimaki M et al (2010) Metaphase FISH on a chip: miniaturized microfluidic device for fluorescence in situ hybridization. Sensors 10:9831–9846

Kwasny D, Vedarethinam I, Shah P et al (2012) Advanced micro-technologies for detection of chromosome abnormalities by fluorescent in situ hybridization. Biomed Microdevices 14:453–460

Kao KJ, Tai CH, Chang WH et al (2015) A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Biosens Bioelectron 69:272–279

Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18:371–390

Yang H, Hui A, Pampalakis G, Soleymani L, Liu FF, Sargent EH, Kelley SO (2009) Direct, electronic microRNA detection for the rapid determination of differential expression profiles. Angew Chem Int Ed Engl 48:8461–8464

Roy S, Soh JH, Gao ZA (2011) Microfluidic-assisted microarray for ultrasensitive detection of miRNA under an optical microscope. Lab Chip 11:1886–1894

Dong H, Jin S, Ju H, Hao K, Xu LP, Lu H, Zhang X (2012) Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84:8670–8674

Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC (2013) Label-free and reagentless electrochemical detection of microRNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 1:1–10

Karreth FA, Pandolfi PP (2013) CeRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3:1113–1121

Dave VP, Ngo TA, Pernestig A, Tilevik D, Kant K, Nguyen T et al (2019) MicroRNA amplification and detection technologies: opportunities and challenges for point of care diagnostics. Lab Invest 99:452–469

Sajid M, Kawde AN, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689–705

Tripathi P, Upadhyay N, Nara S (2018) Recent advancements in lateral flow immunoassays: a journey for toxin detection in food. Crit Rev Food Sci Nutr 58:1715–1734

Hou SY, Hsiao YL, Lin MS et al (2012) MicroRNA detection using lateral flow nucleic acid strips with gold nanoparticles. Talanta 99:375–379

Gao X, Xu LP, Wu T et al (2016) An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 146:648–654

Feng C, Mao X, Shi H et al (2017) Detection of microRNA: a point-of-care testing method based on a pH-responsive and highly efficient isothermal amplification. Anal Chem 89:6631–6636

Choi Y, Metcalf G, Sleiman MH et al (2014) Oligonucleotide-templated reactions based on peptide nucleic acid (PNA) probes: concept and biomedical applications. Bioorg Med Chem 22:4395–4398

Metcalf GAD, Shibakawa A, Pate H et al (2016) Amplification-free detection of circulating microRNA biomarkers from body fluids based on fluorogenic oligonucleotide-templated reaction between engineered peptide nucleic acid probes: application to prostate cancer diagnosis. Anal Chem 88:8091–8098

Degliangeli F, Kshirsagar P, Brunetti V et al (2014) Absolute and direct microRNA quantification using DNA-gold nanoparticle probes. J Am Chem Soc 136:2264–2267

Hamidi-asl E, Palchetti I, Hasheminejad E et al (2013) A review on the electrochemical biosensors for determination of microRNAs. Talanta 115:74–83

Mollaei H, Safaralizadeh R, Rostami Z (2019) MicroRNA replacement therapy in cancer. J Cell Physiol 234(8):12369–12384

Kobayashi M, Sawada K, Kimura T (2018) Is microRNA replacement therapy promising treatment for cancer? Non-coding RNA Investig 2:56

Iorio M, Casalini P, Piovan C, Braccioli L, Tagliabue E (2012) Current and future developments in cancer therapy research: miRNAs as new promising targets or tools. In: Bologna M (ed) Biotargets of cancer in current clinical practice. Humana Press, Milan, pp 517–546

Haussecker D, Kay MA (2010) miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther 18:240–242

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

Pagotto S, Veronese A, Soranno A et al (2018) Hsa-miR-155-5p drives aneuploidy at early stages of cellular transformation. Oncotarget 9(16):13036–13047

Alivernini S, Gremese E, McSharry C et al (2018) MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis. Front Immunol 8:1932

Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930

Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al (2010) Regression of murine lung tumors by the let-7 microRNA. Oncogene 29:1580–1587

Kitade Y, Akao Y (2010) MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and -145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. J Pharmacol Sci 114:276–280

Pramanik D, Campbell NR, Karikari C, Chivukula R, Kent OA, Mendell JT, Maitra A (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10:1470–1480

Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y (2015) Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160

Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ (2011) MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm 8(4):1381–1389

Takyar S, Vasavada H, Zhang JG, Ahangari F, Niu N, Liu Q et al (2013) VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med 210:1993–2010