Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites
Tóm tắt
Từ khóa
Tài liệu tham khảo
1. Leavitt, D.D., Martin, M., Moeller, J.H. and Lee, W.L.,Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery. Med Phys; 17(1):87–91, 1990.
2. Klein, E.E., Low, D.A., Meigooni, A.S. and Purdy, J.A.,Dosimetry and clinical implementation of dynamic wedge. Int J Radiat Oncol Biol Phys; 31(3):583–92, 1995.
3. Leavitt, D.D. and Klein, E.,Dosimetry measurement tools for commissioning enhanced dynamic wedge. Med Dosim; 22 (3):171–6, 1997.
4. Gibbons, J.P.,Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields. Med Phys; 25(8):1411–8, 1998.
5. Milliken., B.D, Hamilton, R.J. and Rubin, S.J.,The omni wedge: a method to produce wedged fields at arbitrary orientations. Med Phys; 23(3): 337–42, 1996.
6. Milliken, B.D., Turian, J.V, Hamilton, R.J., Rubin, S.J., Kuchnir, F.T., Yu, C.X. and Wong, J.W.,Verification of the omni wedge technique. Med Phys; 25(8):1419–23, 1998.
7. Brewster, L., Mohan, R., Mageras, G., Burman, C., Leibel, S. and Fuks Z.,Three dimensional conformal treatment planning with multileaf collimators. Int J Radiat Oncol Biol Phys; 33(5): 1081–9, 1995.
8. Foroudi, F., Lapsley, H., Manderson, C. and Yeghiaian-Alvandi, R.,Cost-minimization analysis: radiation treatment with and without a multi-leaf collimator. Int J Radiat Oncol Biol Phys; 47(5):1443–8, 2000.
9. Adams, E.J., Cosgrove, V.P., Shepherd, S.F., Warringtong, A. P., Bedford, J.L. Mubata, C.D., Bidmead, A.M. and Brada, M.,Comparison of a multi-leaf collimator with conformal blocks for the delivery of stereotactically guided conformal radiotherapy. Radiother Oncol; 51(3):205–9, 1999.
10. Zhu, J.,Generation of wedge-shaped dose distributions through dynamic multileaf collimator dose delivery. J Appl Clin Med Phys; 6(3): 37–45, 2005.
11. Mayo, C., Lo, Y.C., Fitzgerald, T.J. and Urie, M.,Forwardplanned, multiple-segment, tangential fields with concomitant boost in the treatment of breast cancer. Med Dosim; 29(4):265–70, 2004.
12. de la Torre, N., Figueroa, C.T., Martinez, K., Riley, S. and Chapman, J.,A comparative study of surface dose and dose distribution for intact breast following irradiation with fieldinfield technique vs. the use of conventional wedges. Med Dosim; 29(2):109–14, 2004.
13. Borghero, Y.O., Salehpour, M., McNeese, M.D., Stovall, M., Smith, S.A., Johnson, J., Perkins, G.H,, Strom, E.A., Oh, J.L., Kirsner, S.M., Woodward, W.A., Yu, T.K. and Buchholz, T.A.,Multileaf field-in-field forward-planned intensitymodulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison. Radiother Oncol; 82(3): 324–8, 2007.
14. Lomax, N.J. and Scheib, S.G.,Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys; 55(5): 1409–19, 2003.
15. Prabhakar, R., Julka, P.K., Malik, M., Ganesh, T., Joshi, R.C., Sridhar, P.S., Rath, G.K., Pant, G.S. and Thulkar, S.Comparison of contralateral breast dose for various tangential field techniques in clinical radiotherapy. Technol Cancer Res Treat; 6(2):135–8, 2007.
16. Stasi, M., Moro, G., Ramella, S., Bertone, A., Maruca, S. and Ciambellotti, E.,Factors affecting the contralateral dose for the non-treated breast in irradiation following quadrantectomy. Radiol Med; 93(5):596–9, 1997.
17. Fraass, B.A., Roberson, P.L. and Lichter, A.S.,Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys; 11(3):485–97, 1985.
18. Prabhakar, R., Haresh, K.P., Julka, P.K., Ganesh, T., Rath, G.K., Joshi, R.C., Sasindran, M., Naik, K.K. and Sridhar, P.S.,A study on contralateral breast surface dose for various tangential field techniques and the impact of set-up error on this dose. Australas Phys Eng Sci Med; 30(1):42–5, 2007.
19. Kelly, C.A., Wang, X.Y., Chu, J.C. and Hartsell, W.F.,Dose to contralateral breast: a comparison of four primary breast irradiation techniques. Int J Radiat Oncol Biol Phys; 34(3):727–32, 1996.
20. Mihai, A., Rakovitch, E., Sixel, K., Woo, T., Cardoso, M., Bell, C., Ruschin, M. and Pignol, J.P.,Inverse vs. forward breast IMRT planning. Med Dosim; 30(3):149–54, 2005.
21. Cheung, KY, Choi, PH, Chau, R.M., Lee, L.K,, Teo, P.M., Ngar, Y.K.,The roles of multileaf collimators and micromultileaf collimators in conformal and conventional nasopharyngeal carcinoma radiotherapy treatments. Med Phys; 26(10):2077–85, 1999.
22. Fiveash, J.B., Murshed, H., Duan, J., Hyatt, M., Caranto, J., Bonner, J.A. and Popple, R.A.,Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys; 29(6):1116–9, 2002.
23. Wang, L., Movsas, B., Jacob, R., Fourkal, E., Chen, L., Price, R., Feigenberg, S., Konski, A., Pollack. A. and Ma, C.,Stereotactic IMRT for prostate cancer: dosimetric impact of multileaf collimator leaf width in the treatment of prostate cancer with IMRT. J Appl Clin Med Phys; 5(2):29–41, 2004.