Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

R Prabhakar1, Pramod Kumar Julka1, G. K. Rath1
1Department of Radiation Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

1. Leavitt, D.D., Martin, M., Moeller, J.H. and Lee, W.L.,Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery. Med Phys; 17(1):87–91, 1990.

2. Klein, E.E., Low, D.A., Meigooni, A.S. and Purdy, J.A.,Dosimetry and clinical implementation of dynamic wedge. Int J Radiat Oncol Biol Phys; 31(3):583–92, 1995.

3. Leavitt, D.D. and Klein, E.,Dosimetry measurement tools for commissioning enhanced dynamic wedge. Med Dosim; 22 (3):171–6, 1997.

4. Gibbons, J.P.,Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields. Med Phys; 25(8):1411–8, 1998.

5. Milliken., B.D, Hamilton, R.J. and Rubin, S.J.,The omni wedge: a method to produce wedged fields at arbitrary orientations. Med Phys; 23(3): 337–42, 1996.

6. Milliken, B.D., Turian, J.V, Hamilton, R.J., Rubin, S.J., Kuchnir, F.T., Yu, C.X. and Wong, J.W.,Verification of the omni wedge technique. Med Phys; 25(8):1419–23, 1998.

7. Brewster, L., Mohan, R., Mageras, G., Burman, C., Leibel, S. and Fuks Z.,Three dimensional conformal treatment planning with multileaf collimators. Int J Radiat Oncol Biol Phys; 33(5): 1081–9, 1995.

8. Foroudi, F., Lapsley, H., Manderson, C. and Yeghiaian-Alvandi, R.,Cost-minimization analysis: radiation treatment with and without a multi-leaf collimator. Int J Radiat Oncol Biol Phys; 47(5):1443–8, 2000.

9. Adams, E.J., Cosgrove, V.P., Shepherd, S.F., Warringtong, A. P., Bedford, J.L. Mubata, C.D., Bidmead, A.M. and Brada, M.,Comparison of a multi-leaf collimator with conformal blocks for the delivery of stereotactically guided conformal radiotherapy. Radiother Oncol; 51(3):205–9, 1999.

10. Zhu, J.,Generation of wedge-shaped dose distributions through dynamic multileaf collimator dose delivery. J Appl Clin Med Phys; 6(3): 37–45, 2005.

11. Mayo, C., Lo, Y.C., Fitzgerald, T.J. and Urie, M.,Forwardplanned, multiple-segment, tangential fields with concomitant boost in the treatment of breast cancer. Med Dosim; 29(4):265–70, 2004.

12. de la Torre, N., Figueroa, C.T., Martinez, K., Riley, S. and Chapman, J.,A comparative study of surface dose and dose distribution for intact breast following irradiation with fieldinfield technique vs. the use of conventional wedges. Med Dosim; 29(2):109–14, 2004.

13. Borghero, Y.O., Salehpour, M., McNeese, M.D., Stovall, M., Smith, S.A., Johnson, J., Perkins, G.H,, Strom, E.A., Oh, J.L., Kirsner, S.M., Woodward, W.A., Yu, T.K. and Buchholz, T.A.,Multileaf field-in-field forward-planned intensitymodulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison. Radiother Oncol; 82(3): 324–8, 2007.

14. Lomax, N.J. and Scheib, S.G.,Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys; 55(5): 1409–19, 2003.

15. Prabhakar, R., Julka, P.K., Malik, M., Ganesh, T., Joshi, R.C., Sridhar, P.S., Rath, G.K., Pant, G.S. and Thulkar, S.Comparison of contralateral breast dose for various tangential field techniques in clinical radiotherapy. Technol Cancer Res Treat; 6(2):135–8, 2007.

16. Stasi, M., Moro, G., Ramella, S., Bertone, A., Maruca, S. and Ciambellotti, E.,Factors affecting the contralateral dose for the non-treated breast in irradiation following quadrantectomy. Radiol Med; 93(5):596–9, 1997.

17. Fraass, B.A., Roberson, P.L. and Lichter, A.S.,Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys; 11(3):485–97, 1985.

18. Prabhakar, R., Haresh, K.P., Julka, P.K., Ganesh, T., Rath, G.K., Joshi, R.C., Sasindran, M., Naik, K.K. and Sridhar, P.S.,A study on contralateral breast surface dose for various tangential field techniques and the impact of set-up error on this dose. Australas Phys Eng Sci Med; 30(1):42–5, 2007.

19. Kelly, C.A., Wang, X.Y., Chu, J.C. and Hartsell, W.F.,Dose to contralateral breast: a comparison of four primary breast irradiation techniques. Int J Radiat Oncol Biol Phys; 34(3):727–32, 1996.

20. Mihai, A., Rakovitch, E., Sixel, K., Woo, T., Cardoso, M., Bell, C., Ruschin, M. and Pignol, J.P.,Inverse vs. forward breast IMRT planning. Med Dosim; 30(3):149–54, 2005.

21. Cheung, KY, Choi, PH, Chau, R.M., Lee, L.K,, Teo, P.M., Ngar, Y.K.,The roles of multileaf collimators and micromultileaf collimators in conformal and conventional nasopharyngeal carcinoma radiotherapy treatments. Med Phys; 26(10):2077–85, 1999.

22. Fiveash, J.B., Murshed, H., Duan, J., Hyatt, M., Caranto, J., Bonner, J.A. and Popple, R.A.,Effect of multileaf collimator leaf width on physical dose distributions in the treatment of CNS and head and neck neoplasms with intensity modulated radiation therapy. Med Phys; 29(6):1116–9, 2002.

23. Wang, L., Movsas, B., Jacob, R., Fourkal, E., Chen, L., Price, R., Feigenberg, S., Konski, A., Pollack. A. and Ma, C.,Stereotactic IMRT for prostate cancer: dosimetric impact of multileaf collimator leaf width in the treatment of prostate cancer with IMRT. J Appl Clin Med Phys; 5(2):29–41, 2004.

24. Wang, L., Hoban, P., Paskalev, K., Yang J, Li, J., Chen, L., Xiong, W. and Ma, C.C.,Dosimetric advantage and clinical implication of a micro-multileaf collimator in the treatment of prostate with intensity-modulated radiotherapy. Med Dosim; 30(2):97–103, 2005.