Calorimetry System Based on Polystyrene/MWCNT Nanocomposite for Electron Beam Dosimetry: A New Approach

Pleiades Publishing Ltd - Tập 15 - Trang 175-181 - 2020
Abbas Rahimi1, Farhood Ziaie1, Nasrin Sheikh1, Shahryar Malekie1
1Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

Tóm tắt

A novel calorimetry system is presented to use in radiation processing facilities equipped with an electron accelerator. The calorimeter core was fabricated with polystyrene/multiwall carbon nanotube nanocomposite. The nanocomposite samples were made in different weight percentages of MWCNTs namely 0.05, 0.1, 0.28, 1, and 2 wt %. The SEM analysis was applied to demonstrate the dispersion state of the inclusions into the polymer matrix. The electrical percolation threshold was investigated and achieved at about 0.1 wt % of the inclusion. The electrical resistance of the samples was objected as the calorimeter response before and after the electron beam irradiation. A linear response of the resistance-dose curve was observed for all the nanocomposites having the 0.1 and 0.28 wt % of the inclusion at a dose range of ~8 to ~40 kGy. The results showed that the decrease of the MWCNT content leads to increasing the electrical resistance. Furthermore, the thicker sample showed better experimental results in comparison to the thinners. The best results were obtained for the nanocomposite sample containing 0.14 wt % of MWCNT and 5 mm of sample thickness.

Tài liệu tham khảo

A. Miller and A. Kovacs, Nucl. Instrum. Methods Phys. Res., Sect. B 10, 994 (1985). J. Humphreys and W. McLaughlin, Int. J. Radiat. A-ppl. Instrum. C 35, 744 (1990). W. L. McLaughlin, A. Boyd, K. Chadwick, et al., Dosimetry for Radiation Processing (Taylor and Francis, London, 1989). F. Liu, X. Zhang, W. Li, et al., Composites, Part A 40, 1717 (2009). M. Borhani, F. Ziaie, M. Bolorizadeh, and G. Mirjalili, Nukleonika 51, 179 (2006). V. Mittal, Optimization of Polymer Nanocomposite Properties (Wiley, Germany, 2009). F. Ziaie, Nukleonika 49, 159 (2004). F. Ziaie and A. Noori, Nukleonika 51, 175 (2006). P. Owen, Modelling a Calorimeter for High Dose Rate Brachytherapy (Dep. Phys., Univ. of Surrey, 2011), p. 76. S. Malekie, F. Ziaie, and A. Esmaeli, Nucl. Instrum. Methods Phys. Res., Sect. A 816, 101 (2016). F. Puch and C. Hopmann, Polymer 55, 3015 (2014). D. Vennerberg and R. Hall, M. R. Polymer 55, 4156 (2014). S. Gong, Z. H. Zhu, and S. A. Meguid, Polymer 56, 498 (2015). S. Malekie and F. Ziaie, Nucl. Instrum. Methods Phys. Res., Sect. A 791, 1 (2015). S. Malekie, F. Ziaie, S. Feizi, and A. Esmaeli, Nucl. Instrum. Methods Phys. Res., Sect. A 833, 127–133 (2016). S. Malekie, F. Ziaie, and M. A. Naeini, Kerntechnik 81, 647 (2016). S. Malekie and F. Ziaie, J. Polym. Eng. 37, 205 (2017). A. Mosayebi, S. Malekie, and F. Ziaie, J. Instrum. 12, P05012 (2017). A. Mosayebi, S. Malekie, A. Rahimi, and F. Ziaie, Radiat. Phys. Chem., 108362 (2019). Z. Han and A. Fina, Prog. Polym. Sci. 36, 914 (2011). D. S. McLachlan and G. Sauti, “The AC and DC conductivity of nanocomposites,” J. Nanomater., 030389 (2007). S. Zdenko and T. Dimitrios, Prog. Polym. Sci 35, 357 (2010). A. Belashi, Percolation modeling in polymer nanocomposites, Dissertation (2011). Alamusi, N. Hu, H. Fukunaga, et al., Sensors 11, 10691 (2011). J.-M. Yuan, Z.-F. Fan, X.-H. Chen, et al., Polymer 50, 3285 (2009). F. Ziaie, A. Noori, F. Anvari, et al., Rad. Meas. 40, 758 (2005). F. Ziaie, H. Afarideh, S. Hadji-Saeid, and S. Durrani, Rad. Meas. 34, 609 (2001). Y. Wang, J. Lue, and K. Pauw, J. Nanosci. Nanotechnol. 9, 1734 (2009). J. O. Aguilar, J. R. Bautista-Quijano, and F. Aviles, E-xpress Polym. Lett. 4, 292 (2010). N. Apsley and H. P. Hughes, Philos. Mag. 3, 963 (1974). M. S. Saavedra, Novel organic based nano-composite detector films: The making and testing of CNT doped poly(acrylate) thin films on ceramic chip substrates, BSc Dissertation (Dep. Phys., Univ. Surrey, Guildford, Surrey, 2005), p. 37. B. Safadi, R. Andrews, and E. Grulke, J. Appl. Polym. Sci. 84, 2660 (2002). A. K. Kota, B. H. Cipriano, M. K. Duesterberg, et al., Macromolecules 40, 7400 (2007). G. Sun, G. Chen, Z. Liu, and M. Chen, Carbon 48, 1434 (2010). S. Mazinani, A. Ajji, and C. Dubois, Polymer 50, 3329 (2009). S. Kara, E. Arda, F. Dolastir, and Ö. Pekcan, J. Colloid Interface Sci. 344, 395 (2010). A. Shah and T. Rizvi, Measurement 46, 1541 (2013). R. Bhatia, J. Galibert, and R. Menon, Carbon 69, 372 (2014). J. Yu, K. Lu, E. Sourty, et al., Carbon 45, 2897 (2007). X. Wang and S. C. Jana, Polymer 54, 750 (2013). V. K. Sachdev, S. Bhattacharya, K. Patel, et al., J. Appl. Polym. Sci., 131 (2014). V. Kažukauskas, V. Kalendra, C. Bumby, et al., Phys. Status Solidi C 5, 3172 (2008). M. Arjmand, T. Apperley, M. Okoniewski, and U. Sundararaj, Carbon 50, 5126 (2012). N. K. Shrivastava and B. Khatua, Carbon 49, 4571 (2011). B. Zhang, R. W. Fu, M. Q. Zhang, et al., Sens. Actuators, B 109, 323 (2005). S. T. Kim, H. J. Choi, and S. M. Hong, Colloid Polym. Sci. 285, 593 (2007). C. Poa, S. Silva, P. Watts, et al., Appl. Phys. Lett. 80, 3189 (2002).