Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers

Ruth Nussinov1,2, Mingzhen Zhang1, Chung-Jung Tsai1, Hyunbum Jang1
1Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
2Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel

Tài liệu tham khảo

Global Oncology Trend Report Thomas, 2017, Structural biology and the design of new therapeutics: from HIV and cancer to mycobacterial infections: a paper dedicated to John Kendrew, J. Mol. Biol., 429, 2677, 10.1016/j.jmb.2017.06.014 Molina-Cerrillo, 2017, Bruton's tyrosine kinase (BTK) as a promising target in solid tumors, Cancer Treat. Rev., 58, 41, 10.1016/j.ctrv.2017.06.001 Lu, 2016, Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view, Chem. Soc. Rev., 45, 4929, 10.1039/C5CS00911A Lu, 2016, Inhibitors of Ras-SOS interactions, ChemMedChem, 11, 814, 10.1002/cmdc.201500481 Brioschi, 2017, Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential, Expert Rev. Proteomics, 14, 515, 10.1080/14789450.2017.1332998 Goldfinger, 2017, Regulation of Ras signaling and function by plasma membrane microdomains, Biosci. Trends, 11, 23, 10.5582/bst.2016.01220 Martinelli, 2017, Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK, Cancer Treat. Rev., 53, 61, 10.1016/j.ctrv.2016.12.001 Keeton, 2017, The RAS-effector interaction as a drug target, Cancer Res., 77, 221, 10.1158/0008-5472.CAN-16-0938 Thillai, 2017, Deciphering the link between PI3K and PAK: an opportunity to target key pathways in pancreatic cancer?, Oncotarget, 8, 14173, 10.18632/oncotarget.13309 Dang, 2017, Drugging the ‘undruggable’ cancer targets, Nat. Rev. Cancer, 17, 502, 10.1038/nrc.2017.36 Novotny, 2017, Farnesyltransferase-mediated delivery of a covalent inhibitor overcomes alternative prenylation to mislocalize K-Ras, ACS Chem. Biol., 12, 1956, 10.1021/acschembio.7b00374 Neilsen, 2017, KSR as a therapeutic target for Ras-dependent cancers, Expert Opin. Ther. Targets, 21, 499, 10.1080/14728222.2017.1311325 Nussinov, 2017, A new view of pathway-driven drug resistance in tumor proliferation, Trends Pharmacol. Sci., 38, 427, 10.1016/j.tips.2017.02.001 Mohammad, 2017, Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation, Small GTPases, 0 Aboukameel, 2017, Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and stemness in pancreatic ductal adenocarcinoma, Mol. Cancer Ther., 16, 76, 10.1158/1535-7163.MCT-16-0205 Nussinov, 2013, ‘Pathway drug cocktail’: targeting Ras signaling based on structural pathways, Trends Mol. Med., 19, 695, 10.1016/j.molmed.2013.07.009 Jansen, 2017, Inhibition of prenylated KRAS in a lipid environment, PLoS One, 12, 10.1371/journal.pone.0174706 Ohm, 2017, Co-dependency of PKCδ and K-Ras: inverse association with cytotoxic drug sensitivity in KRAS mutant lung cancer, Oncogene, 36, 4370, 10.1038/onc.2017.27 Wu, 2017, Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells, Transl. Oncol., 10, 221, 10.1016/j.tranon.2016.12.008 Nussinov, 2016, Oncogenic KRAS signaling and YAP1/β-catenin: similar cell cycle control in tumor initiation, Semin. Cell Dev. Biol., 58, 79, 10.1016/j.semcdb.2016.04.001 Nussinov, 2016, K-Ras4B/calmodulin/PI3Kα: a promising new adenocarcinoma-specific drug target?, Expert Opin. Ther. Targets, 20, 831, 10.1517/14728222.2016.1135131 Nussinov, 2014, The structural basis for cancer treatment decisions, Oncotarget, 5, 7285, 10.18632/oncotarget.2439 Lin, 2017, Targeting the Ras palmitoylation/depalmitoylation cycle in cancer, Biochem. Soc. Trans., 45, 913, 10.1042/BST20160303 Csermely, 2016, Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub, Semin. Cell Dev. Biol., 58, 55, 10.1016/j.semcdb.2016.07.005 Zhou, 2016, The role of wild type RAS isoforms in cancer, Semin. Cell Dev. Biol., 58, 60, 10.1016/j.semcdb.2016.07.012 Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542 Tsai, 2015, K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif, Proc. Natl. Acad. Sci. U. S. A., 112, 779, 10.1073/pnas.1412811112 Chakrabarti, 2016, Comparison of the conformations of KRAS isoforms, K-Ras4A and K-Ras4B, points to similarities and significant differences, J. Phys. Chem. B, 120, 667, 10.1021/acs.jpcb.5b11110 Nussinov, 2016, A new view of Ras isoforms in cancers, Cancer Res., 76, 18, 10.1158/0008-5472.CAN-15-1536 Li, 2017, Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology, Structure, 25, 679, 10.1016/j.str.2017.02.007 Nussinov, 2017, Calmodulin and PI3K signaling in KRAS cancers, Trends Cancer, 3, 214, 10.1016/j.trecan.2017.01.007 Prieur, 2017, Targeting the Wnt pathway and cancer stem cells with anti-progastrin humanized antibodies as a potential treatment for K-RAS-mutated colorectal cancer, Clin. Cancer Res., 23, 5267, 10.1158/1078-0432.CCR-17-0533 Imajo, 2017, Antagonistic interactions between extracellular signal-regulated kinase mitogen-activated protein kinase and retinoic acid receptor signaling in colorectal cancer cells, Mol. Cell. Biol., 37, 10.1128/MCB.00012-17 Schneider, 2017, Tissue-specific tumorigenesis: context matters, Nat. Rev. Cancer, 17, 239, 10.1038/nrc.2017.5 Banerjee, 2016, The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding, Curr. Opin. Struct. Biol., 36, 10, 10.1016/j.sbi.2015.11.010 Vos, 2003, RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor, J. Biol. Chem., 278, 28045, 10.1074/jbc.M300554200 Jang, 2017, Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction, J. Biol. Chem., 292, 12544, 10.1074/jbc.M117.785063 Nussinov, 2015, The key role of calmodulin in KRAS-driven adenocarcinomas, Mol. Cancer Res., 13, 1265, 10.1158/1541-7786.MCR-15-0165 Choi, 2016, Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases, Nat. Cell Biol., 18, 1324, 10.1038/ncb3441 Zhang, 2017, Phosphorylated calmodulin promotes PI3K activation by binding to the SH2 domains, Biophys. J., 10.1016/j.bpj.2017.09.008 Zhang, 2011, Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism, Mol. Cell, 41, 567, 10.1016/j.molcel.2011.01.026 Agamasu, 2017, The interplay between calmodulin and membrane interactions with the pleckstrin homology domain of Akt, J. Biol. Chem., 292, 251, 10.1074/jbc.M116.752816 Altomare, 2005, Perturbations of the AKT signaling pathway in human cancer, Oncogene, 24, 7455, 10.1038/sj.onc.1209085 Coticchia, 2009, Calmodulin modulates Akt activity in human breast cancer cell lines, Breast Cancer Res. Treat., 115, 545, 10.1007/s10549-008-0097-z Wang, 2009, IQGAP1 regulates cell proliferation through a novel CDC42-mTOR pathway, J. Cell Sci., 122, 2024, 10.1242/jcs.044644 Choi, 2017, And Akt-ion! IQGAP1 in control of signaling pathways, EMBO J., 36, 967, 10.15252/embj.201796827 Vivanco, 2002, The phosphatidylinositol 3-Kinase AKT pathway in human cancer, Nat. Rev. Cancer, 2, 489, 10.1038/nrc839 Gregorieff, 2017, Hippo signalling in intestinal regeneration and cancer, Curr. Opin. Cell Biol., 48, 17, 10.1016/j.ceb.2017.04.005 Nussinov, 2017, Intrinsic protein disorder in oncogenic KRAS signaling, Cell. Mol. Life Sci., 74, 3245, 10.1007/s00018-017-2564-3 Pfleger, 2017, The hippo pathway: a master regulatory network important in development and dysregulated in disease, Curr. Top. Dev. Biol., 123, 181, 10.1016/bs.ctdb.2016.12.001 Liao, 2016, RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro, Curr. Opin. Struct. Biol., 41, 217, 10.1016/j.sbi.2016.09.001 Barnoud, 2017, The role of the NORE1A tumor suppressor in oncogene-induced senescence, Cancer Lett., 400, 30, 10.1016/j.canlet.2017.04.030 Donninger, 2016, Ras signaling through RASSF proteins, Semin. Cell Dev. Biol., 58, 86, 10.1016/j.semcdb.2016.06.007 Liao, 2017, The dynamic mechanism of RASSF5 and MST kinase activation by Ras, Phys. Chem. Chem. Phys., 19, 6470, 10.1039/C6CP08596B Jang, 2016, Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers, Biochem. J., 473, 1719, 10.1042/BCJ20160031 Nan, 2015, Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway, Proc. Natl. Acad. Sci. U. S. A., 112, 7996, 10.1073/pnas.1509123112 Muratcioglu, 2015, GTP-dependent K-Ras dimerization, Structure, 23, 1325, 10.1016/j.str.2015.04.019 Siempelkamp, 2017, Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas, J. Biol. Chem., 292, 12256, 10.1074/jbc.M117.789263 Villalonga, 2001, Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling, Mol. Cell. Biol., 21, 7345, 10.1128/MCB.21.21.7345-7354.2001 Berchtold, 2014, The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer, Biochim. Biophys. Acta, 1843, 398, 10.1016/j.bbamcr.2013.10.021 Cheung, 1980, Calmodulin plays a pivotal role in cellular regulation, Science, 207, 19, 10.1126/science.6243188 Wu, 2011, Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin, PLoS One, 6 Abraham, 2009, The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin, Biochemistry, 48, 7575, 10.1021/bi900769j Chavan, 2013, Application of reductive (1)(3)C-methylation of lysines to enhance the sensitivity of conventional NMR methods, Molecules, 18, 7103, 10.3390/molecules18067103 Fivaz, 2005, Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin, J. Cell Biol., 170, 429, 10.1083/jcb.200409157 Sidhu, 2003, Ca2+/calmodulin binds and dissociates K-RasB from membrane, Biochem. Biophys. Res. Commun., 304, 655, 10.1016/S0006-291X(03)00635-1 Sperlich, 2016, Regulation of K-Ras4B membrane binding by calmodulin, Biophys. J., 111, 113, 10.1016/j.bpj.2016.05.042 Prior, 2012, A comprehensive survey of Ras mutations in cancer, Cancer Res., 72, 2457, 10.1158/0008-5472.CAN-11-2612 Mageean, 2015, Absolute quantification of endogenous Ras isoform abundance, PLoS One, 10, 10.1371/journal.pone.0142674 Chung, 2016, Comparison of liver oncogenic potential among human RAS isoforms, Oncotarget, 7, 7354, 10.18632/oncotarget.6931 Komeiji, 2002, Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin, FEBS Lett., 521, 133, 10.1016/S0014-5793(02)02853-3 Zhang, 2012, Structural basis for calmodulin as a dynamic calcium sensor, Structure, 20, 911, 10.1016/j.str.2012.03.019 Fallon, 2005, Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel, Structure, 13, 1881, 10.1016/j.str.2005.09.021 Lopez-Alcala, 2008, Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization, J. Biol. Chem., 283, 10621, 10.1074/jbc.M706238200 Erwin, 2016, Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca2+ binding and the hypervariable region of K-Ras4B, Phys. Chem. Chem. Phys., 18, 30020, 10.1039/C6CP06553H Liao, 2006, Growth factor-dependent AKT activation and cell migration requires the function of c-K(B)-Ras versus other cellular ras isoforms, J. Biol. Chem., 281, 29730, 10.1074/jbc.M600668200 Joyal, 1997, Calmodulin activates phosphatidylinositol 3-kinase, J. Biol. Chem., 272, 28183, 10.1074/jbc.272.45.28183 Wang, 2015, K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling, Cell, 163, 1237, 10.1016/j.cell.2015.10.041 Nussinov, 2014, Unraveling structural mechanisms of allosteric drug action, Trends Pharmacol. Sci., 35, 256, 10.1016/j.tips.2014.03.006 Kar, 2010, Allostery and population shift in drug discovery, Curr. Opin. Pharmacol., 10, 715, 10.1016/j.coph.2010.09.002 Nussinov, 2012, The different ways through which specificity works in orthosteric and allosteric drugs, Curr. Pharm. Des., 18, 1311, 10.2174/138161212799436377 Nussinov, 2013, Allostery in disease and in drug discovery, Cell, 153, 293, 10.1016/j.cell.2013.03.034 Nussinov, 2015, The design of covalent allosteric drugs, Annu. Rev. Pharmacol. Toxicol., 55, 249, 10.1146/annurev-pharmtox-010814-124401 Jubb, 2015, Flexibility and small pockets at protein-protein interfaces: new insights into druggability, Prog. Biophys. Mol. Biol., 119, 2, 10.1016/j.pbiomolbio.2015.01.009 Higueruelo, 2013, Protein-protein interactions as druggable targets: recent technological advances, Curr. Opin. Pharmacol., 13, 791, 10.1016/j.coph.2013.05.009 Ostrem, 2013, K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions, Nature, 503, 548, 10.1038/nature12796 Wang, 2016, In vivo genetic dissection of tumor growth and the Warburg effect, elife, 5, 10.7554/eLife.18126 Zhao, 2017, Direct targeting of the Ras GTPase superfamily through structure- based design, Curr. Top. Med. Chem., 17, 16, 10.2174/1568026616666160719165633 Cox, 2015, Targeting RAS membrane association: back to the future for anti-RAS drug discovery?, Clin. Cancer Res., 21, 1819, 10.1158/1078-0432.CCR-14-3214 Dharmaiah, 2016, Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ, Proc. Natl. Acad. Sci. U. S. A., 113, E6766, 10.1073/pnas.1615316113 Martin-Gago, 2017, A PDE6δ-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2, Angew. Chem. Int. Ed. Eng., 56, 2423, 10.1002/anie.201610957 Spiegel, 2014, Small-molecule modulation of Ras signaling, Nat. Chem. Biol., 10, 613, 10.1038/nchembio.1560 Muratcioglu, 2017, PDEδ binding to Ras isoforms provides a route to proper membrane localization, J. Phys. Chem. B, 121, 5917, 10.1021/acs.jpcb.7b03035 Haworth, 2016, Immune profiling of Nf1-associated tumors reveals distinct differences among histologic subtypes and potential for patient-specific selection of immunotherapy, Neuro-Oncology, 18, 90-90, 10.1093/neuonc/now212.375 Sheridan, 2015, Evading inhibitory constraints–destabilizing p110α/p85α interactions, FEBS J., 282, 3525, 10.1111/febs.13392 Nussinov, 2016, Independent and core pathways in oncogenic KRAS signaling, Expert Rev. Proteomics, 13, 711, 10.1080/14789450.2016.1209417 Wu, 2015, β-Adducin siRNA disruption of the spectrin-based cytoskeleton in differentiating keratinocytes prevented by calcium acting through calmodulin/epidermal growth factor receptor/cadherin pathway, Cell. Signal., 27, 15, 10.1016/j.cellsig.2014.10.001 Tzou, 2016, Identification of initial leads directed at the calmodulin-binding region on the Src-SH2 domain that exhibit anti-proliferation activity against pancreatic cancer, Bioorg. Med. Chem. Lett., 26, 1237, 10.1016/j.bmcl.2016.01.027 Gabelli, 2014, Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects, Biophys. Rev., 6, 89, 10.1007/s12551-013-0131-1 Kodaki, 1994, The activation of phosphatidylinositol 3-kinase by Ras, Curr. Biol., 4, 798, 10.1016/S0960-9822(00)00177-9 Gupta, 2007, Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice, Cell, 129, 957, 10.1016/j.cell.2007.03.051 Backer, 1992, Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation, EMBO J., 11, 3469, 10.1002/j.1460-2075.1992.tb05426.x Vadas, 2011, Structural basis for activation and inhibition of class I phosphoinositide 3-kinases, Sci. Signal., 4, re2, 10.1126/scisignal.2002165 Miled, 2007, Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit, Science, 317, 239, 10.1126/science.1135394 Huang, 2007, The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations, Science, 318, 1744, 10.1126/science.1150799 Zhao, 2008, Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms, Proc. Natl. Acad. Sci. U. S. A., 105, 2652, 10.1073/pnas.0712169105 Carson, 2008, Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase, Biochem. J., 409, 519, 10.1042/BJ20070681 Geering, 2007, Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers, Proc. Natl. Acad. Sci. U. S. A., 104, 7809, 10.1073/pnas.0700373104 Carpenter, 1993, Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit, J. Biol. Chem., 268, 9478, 10.1016/S0021-9258(18)98375-4 Mandelker, 2009, A frequent kinase domain mutation that changes the interaction between PI3Kα and the membrane, Proc. Natl. Acad. Sci. U. S. A., 106, 16996, 10.1073/pnas.0908444106 Xu, 2014, Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence, Trends Biochem. Sci., 39, 268, 10.1016/j.tibs.2014.04.004 Chaudhuri, 2016, Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation, Proc. Natl. Acad. Sci. U. S. A., 113, 2110, 10.1073/pnas.1600371113 Shoelson, 1993, Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation, EMBO J., 12, 795, 10.1002/j.1460-2075.1993.tb05714.x Benaim, 2002, Phosphorylation of calmodulin. Functional implications, Eur. J. Biochem., 269, 3619, 10.1046/j.1432-1033.2002.03038.x Joyal, 1996, Identification of insulin-stimulated phosphorylation sites on calmodulin, Biochemistry, 35, 6267, 10.1021/bi9600198 Wong, 1988, Characteristics of calmodulin phosphorylation by the insulin receptor kinase, Endocrinology, 123, 1830, 10.1210/endo-123-4-1830 Williams, 1994, Tyrosine-phosphorylated calmodulin has reduced biological activity, Arch. Biochem. Biophys., 315, 119, 10.1006/abbi.1994.1479 Benguria, 1994, Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase, Eur. J. Biochem., 224, 909, 10.1111/j.1432-1033.1994.00909.x Benaim, 1998, Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 120, 57, 10.1016/S0742-8413(98)00006-1 Palomo-Jimenez, 1999, A method for the purification of phospho(Tyr)calmodulin free of nonphosphorylated calmodulin, Protein Expr. Purif., 16, 388, 10.1006/prep.1999.1092 Stateva, 2015, Ca2+/Calmodulin and Apo-Calmodulin both bind to and enhance the tyrosine kinase activity of c-Src, PLoS One, 10, 10.1371/journal.pone.0128783 Stateva, 2015, Characterization of phospho-(tyrosine)-mimetic calmodulin mutants, PLoS One, 10, 10.1371/journal.pone.0120798 Franke, 1995, The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase, Cell, 81, 727, 10.1016/0092-8674(95)90534-0 Deb, 2004, Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells, J. Biol. Chem., 279, 38903, 10.1074/jbc.M405314200 Lemmon, 2007, Pleckstrin homology (PH) domains and phosphoinositides, Cell Biology of Inositol Lipids and Phosphates, 74, 81 Xu, 2010, Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain, J. Mol. Biol., 396, 31, 10.1016/j.jmb.2009.11.006 Yu, 2004, Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains, Mol. Cell, 13, 677, 10.1016/S1097-2765(04)00083-8 Dillon, 2007, The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer, Oncogene, 26, 1338, 10.1038/sj.onc.1210202 Cooray, 2004, The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival, J. Gen. Virol., 85, 1065, 10.1099/vir.0.19771-0 Huang, 2011, Phosphatidylserine is a critical modulator for Akt activation, J. Cell Biol., 192, 979, 10.1083/jcb.201005100 Agamasu, 2015, Structural and biophysical characterization of the interactions between calmodulin and the pleckstrin homology domain of Akt, J. Biol. Chem., 290, 27403, 10.1074/jbc.M115.673939 Gorbatyuk, 2006, Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction, Mol. Cell, 24, 511, 10.1016/j.molcel.2006.10.007 Calleja, 2009, Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition, PLoS Biol., 7, 10.1371/journal.pbio.1000017 Calleja, 2007, Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo, PLoS Biol., 5, 10.1371/journal.pbio.0050095 Wu, 2010, Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition, PLoS One, 5, 10.1371/journal.pone.0012913 Parikh, 2012, Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers, Proc. Natl. Acad. Sci. U. S. A., 109, 19368, 10.1073/pnas.1204384109 Smith, 2015, IQGAPs choreograph cellular signaling from the membrane to the nucleus, Trends Cell Biol., 25, 171, 10.1016/j.tcb.2014.12.005 Hedman, 2015, The biology of IQGAP proteins: beyond the cytoskeleton, EMBO Rep., 16, 427, 10.15252/embr.201439834 Roy, 2005, IQGAP1 is a scaffold for mitogen-activated protein kinase signaling, Mol. Cell. Biol., 25, 7940, 10.1128/MCB.25.18.7940-7952.2005 Choi, 2013, IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration, EMBO J., 32, 2617, 10.1038/emboj.2013.191 Li, 2003, Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1, J. Biol. Chem., 278, 4347, 10.1074/jbc.M208579200 Chagpar, 2010, Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. U. S. A., 107, 5471, 10.1073/pnas.0908899107 Ren, 2007, IQGAP1 modulates activation of B-Raf, Proc. Natl. Acad. Sci. U. S. A., 104, 10465, 10.1073/pnas.0611308104 Jameson, 2013, IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors, Nat. Med., 19, 626, 10.1038/nm.3165 Sbroggio, 2011, IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload, Cardiovasc. Res., 91, 456, 10.1093/cvr/cvr103 Matsunaga, 2014, IQGAP1 selectively interacts with K-Ras but not with H-Ras and modulates K-Ras function, Biochem. Biophys. Res. Commun., 444, 360, 10.1016/j.bbrc.2014.01.041 McNulty, 2011, MAPK scaffold IQGAP1 binds the EGF receptor and modulates its activation, J. Biol. Chem., 286, 15010, 10.1074/jbc.M111.227694 Roy, 2004, IQGAP1 binds ERK2 and modulates its activity, J. Biol. Chem., 279, 17329, 10.1074/jbc.M308405200 Monteleon, 2015, IQGAP1 and IQGAP3 serve individually essential roles in normal epidermal homeostasis and tumor progression, J. Invest. Dermatol., 135, 2258, 10.1038/jid.2015.140 Hu, 2004, A map of WW domain family interactions, Proteomics, 4, 643, 10.1002/pmic.200300632 Burke, 2015, Synergy in activating class I PI3Ks, Trends Biochem. Sci., 40, 88, 10.1016/j.tibs.2014.12.003 Gao, 2011, PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains, Proc. Natl. Acad. Sci. U. S. A., 108, 14509, 10.1073/pnas.1019386108