Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Tập 1864 - Trang 2304-2314 - 2018
Tài liệu tham khảo
Global Oncology Trend Report
Thomas, 2017, Structural biology and the design of new therapeutics: from HIV and cancer to mycobacterial infections: a paper dedicated to John Kendrew, J. Mol. Biol., 429, 2677, 10.1016/j.jmb.2017.06.014
Molina-Cerrillo, 2017, Bruton's tyrosine kinase (BTK) as a promising target in solid tumors, Cancer Treat. Rev., 58, 41, 10.1016/j.ctrv.2017.06.001
Lu, 2016, Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view, Chem. Soc. Rev., 45, 4929, 10.1039/C5CS00911A
Lu, 2016, Inhibitors of Ras-SOS interactions, ChemMedChem, 11, 814, 10.1002/cmdc.201500481
Brioschi, 2017, Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential, Expert Rev. Proteomics, 14, 515, 10.1080/14789450.2017.1332998
Goldfinger, 2017, Regulation of Ras signaling and function by plasma membrane microdomains, Biosci. Trends, 11, 23, 10.5582/bst.2016.01220
Martinelli, 2017, Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK, Cancer Treat. Rev., 53, 61, 10.1016/j.ctrv.2016.12.001
Keeton, 2017, The RAS-effector interaction as a drug target, Cancer Res., 77, 221, 10.1158/0008-5472.CAN-16-0938
Thillai, 2017, Deciphering the link between PI3K and PAK: an opportunity to target key pathways in pancreatic cancer?, Oncotarget, 8, 14173, 10.18632/oncotarget.13309
Dang, 2017, Drugging the ‘undruggable’ cancer targets, Nat. Rev. Cancer, 17, 502, 10.1038/nrc.2017.36
Novotny, 2017, Farnesyltransferase-mediated delivery of a covalent inhibitor overcomes alternative prenylation to mislocalize K-Ras, ACS Chem. Biol., 12, 1956, 10.1021/acschembio.7b00374
Neilsen, 2017, KSR as a therapeutic target for Ras-dependent cancers, Expert Opin. Ther. Targets, 21, 499, 10.1080/14728222.2017.1311325
Nussinov, 2017, A new view of pathway-driven drug resistance in tumor proliferation, Trends Pharmacol. Sci., 38, 427, 10.1016/j.tips.2017.02.001
Mohammad, 2017, Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation, Small GTPases, 0
Aboukameel, 2017, Novel p21-activated kinase 4 (PAK4) allosteric modulators overcome drug resistance and stemness in pancreatic ductal adenocarcinoma, Mol. Cancer Ther., 16, 76, 10.1158/1535-7163.MCT-16-0205
Nussinov, 2013, ‘Pathway drug cocktail’: targeting Ras signaling based on structural pathways, Trends Mol. Med., 19, 695, 10.1016/j.molmed.2013.07.009
Jansen, 2017, Inhibition of prenylated KRAS in a lipid environment, PLoS One, 12, 10.1371/journal.pone.0174706
Ohm, 2017, Co-dependency of PKCδ and K-Ras: inverse association with cytotoxic drug sensitivity in KRAS mutant lung cancer, Oncogene, 36, 4370, 10.1038/onc.2017.27
Wu, 2017, Dual inhibition of PI3K/AKT and MEK/ERK pathways induces synergistic antitumor effects in diffuse intrinsic pontine glioma cells, Transl. Oncol., 10, 221, 10.1016/j.tranon.2016.12.008
Nussinov, 2016, Oncogenic KRAS signaling and YAP1/β-catenin: similar cell cycle control in tumor initiation, Semin. Cell Dev. Biol., 58, 79, 10.1016/j.semcdb.2016.04.001
Nussinov, 2016, K-Ras4B/calmodulin/PI3Kα: a promising new adenocarcinoma-specific drug target?, Expert Opin. Ther. Targets, 20, 831, 10.1517/14728222.2016.1135131
Nussinov, 2014, The structural basis for cancer treatment decisions, Oncotarget, 5, 7285, 10.18632/oncotarget.2439
Lin, 2017, Targeting the Ras palmitoylation/depalmitoylation cycle in cancer, Biochem. Soc. Trans., 45, 913, 10.1042/BST20160303
Csermely, 2016, Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub, Semin. Cell Dev. Biol., 58, 55, 10.1016/j.semcdb.2016.07.005
Zhou, 2016, The role of wild type RAS isoforms in cancer, Semin. Cell Dev. Biol., 58, 60, 10.1016/j.semcdb.2016.07.012
Lu, 2016, Ras conformational ensembles, allostery, and signaling, Chem. Rev., 116, 6607, 10.1021/acs.chemrev.5b00542
Tsai, 2015, K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif, Proc. Natl. Acad. Sci. U. S. A., 112, 779, 10.1073/pnas.1412811112
Chakrabarti, 2016, Comparison of the conformations of KRAS isoforms, K-Ras4A and K-Ras4B, points to similarities and significant differences, J. Phys. Chem. B, 120, 667, 10.1021/acs.jpcb.5b11110
Nussinov, 2016, A new view of Ras isoforms in cancers, Cancer Res., 76, 18, 10.1158/0008-5472.CAN-15-1536
Li, 2017, Computational modeling reveals that signaling lipids modulate the orientation of K-Ras4A at the membrane reflecting protein topology, Structure, 25, 679, 10.1016/j.str.2017.02.007
Nussinov, 2017, Calmodulin and PI3K signaling in KRAS cancers, Trends Cancer, 3, 214, 10.1016/j.trecan.2017.01.007
Prieur, 2017, Targeting the Wnt pathway and cancer stem cells with anti-progastrin humanized antibodies as a potential treatment for K-RAS-mutated colorectal cancer, Clin. Cancer Res., 23, 5267, 10.1158/1078-0432.CCR-17-0533
Imajo, 2017, Antagonistic interactions between extracellular signal-regulated kinase mitogen-activated protein kinase and retinoic acid receptor signaling in colorectal cancer cells, Mol. Cell. Biol., 37, 10.1128/MCB.00012-17
Schneider, 2017, Tissue-specific tumorigenesis: context matters, Nat. Rev. Cancer, 17, 239, 10.1038/nrc.2017.5
Banerjee, 2016, The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding, Curr. Opin. Struct. Biol., 36, 10, 10.1016/j.sbi.2015.11.010
Vos, 2003, RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor, J. Biol. Chem., 278, 28045, 10.1074/jbc.M300554200
Jang, 2017, Flexible-body motions of calmodulin and the farnesylated hypervariable region yield a high-affinity interaction enabling K-Ras4B membrane extraction, J. Biol. Chem., 292, 12544, 10.1074/jbc.M117.785063
Nussinov, 2015, The key role of calmodulin in KRAS-driven adenocarcinomas, Mol. Cancer Res., 13, 1265, 10.1158/1541-7786.MCR-15-0165
Choi, 2016, Agonist-stimulated phosphatidylinositol-3,4,5-trisphosphate generation by scaffolded phosphoinositide kinases, Nat. Cell Biol., 18, 1324, 10.1038/ncb3441
Zhang, 2017, Phosphorylated calmodulin promotes PI3K activation by binding to the SH2 domains, Biophys. J., 10.1016/j.bpj.2017.09.008
Zhang, 2011, Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism, Mol. Cell, 41, 567, 10.1016/j.molcel.2011.01.026
Agamasu, 2017, The interplay between calmodulin and membrane interactions with the pleckstrin homology domain of Akt, J. Biol. Chem., 292, 251, 10.1074/jbc.M116.752816
Altomare, 2005, Perturbations of the AKT signaling pathway in human cancer, Oncogene, 24, 7455, 10.1038/sj.onc.1209085
Coticchia, 2009, Calmodulin modulates Akt activity in human breast cancer cell lines, Breast Cancer Res. Treat., 115, 545, 10.1007/s10549-008-0097-z
Wang, 2009, IQGAP1 regulates cell proliferation through a novel CDC42-mTOR pathway, J. Cell Sci., 122, 2024, 10.1242/jcs.044644
Choi, 2017, And Akt-ion! IQGAP1 in control of signaling pathways, EMBO J., 36, 967, 10.15252/embj.201796827
Vivanco, 2002, The phosphatidylinositol 3-Kinase AKT pathway in human cancer, Nat. Rev. Cancer, 2, 489, 10.1038/nrc839
Gregorieff, 2017, Hippo signalling in intestinal regeneration and cancer, Curr. Opin. Cell Biol., 48, 17, 10.1016/j.ceb.2017.04.005
Nussinov, 2017, Intrinsic protein disorder in oncogenic KRAS signaling, Cell. Mol. Life Sci., 74, 3245, 10.1007/s00018-017-2564-3
Pfleger, 2017, The hippo pathway: a master regulatory network important in development and dysregulated in disease, Curr. Top. Dev. Biol., 123, 181, 10.1016/bs.ctdb.2016.12.001
Liao, 2016, RASSF5: an MST activator and tumor suppressor in vivo but opposite in vitro, Curr. Opin. Struct. Biol., 41, 217, 10.1016/j.sbi.2016.09.001
Barnoud, 2017, The role of the NORE1A tumor suppressor in oncogene-induced senescence, Cancer Lett., 400, 30, 10.1016/j.canlet.2017.04.030
Donninger, 2016, Ras signaling through RASSF proteins, Semin. Cell Dev. Biol., 58, 86, 10.1016/j.semcdb.2016.06.007
Liao, 2017, The dynamic mechanism of RASSF5 and MST kinase activation by Ras, Phys. Chem. Chem. Phys., 19, 6470, 10.1039/C6CP08596B
Jang, 2016, Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers, Biochem. J., 473, 1719, 10.1042/BCJ20160031
Nan, 2015, Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway, Proc. Natl. Acad. Sci. U. S. A., 112, 7996, 10.1073/pnas.1509123112
Muratcioglu, 2015, GTP-dependent K-Ras dimerization, Structure, 23, 1325, 10.1016/j.str.2015.04.019
Siempelkamp, 2017, Molecular mechanism of activation of class IA phosphoinositide 3-kinases (PI3Ks) by membrane-localized HRas, J. Biol. Chem., 292, 12256, 10.1074/jbc.M117.789263
Villalonga, 2001, Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling, Mol. Cell. Biol., 21, 7345, 10.1128/MCB.21.21.7345-7354.2001
Berchtold, 2014, The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer, Biochim. Biophys. Acta, 1843, 398, 10.1016/j.bbamcr.2013.10.021
Cheung, 1980, Calmodulin plays a pivotal role in cellular regulation, Science, 207, 19, 10.1126/science.6243188
Wu, 2011, Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin, PLoS One, 6
Abraham, 2009, The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin, Biochemistry, 48, 7575, 10.1021/bi900769j
Chavan, 2013, Application of reductive (1)(3)C-methylation of lysines to enhance the sensitivity of conventional NMR methods, Molecules, 18, 7103, 10.3390/molecules18067103
Fivaz, 2005, Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin, J. Cell Biol., 170, 429, 10.1083/jcb.200409157
Sidhu, 2003, Ca2+/calmodulin binds and dissociates K-RasB from membrane, Biochem. Biophys. Res. Commun., 304, 655, 10.1016/S0006-291X(03)00635-1
Sperlich, 2016, Regulation of K-Ras4B membrane binding by calmodulin, Biophys. J., 111, 113, 10.1016/j.bpj.2016.05.042
Prior, 2012, A comprehensive survey of Ras mutations in cancer, Cancer Res., 72, 2457, 10.1158/0008-5472.CAN-11-2612
Mageean, 2015, Absolute quantification of endogenous Ras isoform abundance, PLoS One, 10, 10.1371/journal.pone.0142674
Chung, 2016, Comparison of liver oncogenic potential among human RAS isoforms, Oncotarget, 7, 7354, 10.18632/oncotarget.6931
Komeiji, 2002, Molecular dynamics simulations revealed Ca(2+)-dependent conformational change of Calmodulin, FEBS Lett., 521, 133, 10.1016/S0014-5793(02)02853-3
Zhang, 2012, Structural basis for calmodulin as a dynamic calcium sensor, Structure, 20, 911, 10.1016/j.str.2012.03.019
Fallon, 2005, Structure of calmodulin bound to the hydrophobic IQ domain of the cardiac Ca(v)1.2 calcium channel, Structure, 13, 1881, 10.1016/j.str.2005.09.021
Lopez-Alcala, 2008, Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization, J. Biol. Chem., 283, 10621, 10.1074/jbc.M706238200
Erwin, 2016, Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca2+ binding and the hypervariable region of K-Ras4B, Phys. Chem. Chem. Phys., 18, 30020, 10.1039/C6CP06553H
Liao, 2006, Growth factor-dependent AKT activation and cell migration requires the function of c-K(B)-Ras versus other cellular ras isoforms, J. Biol. Chem., 281, 29730, 10.1074/jbc.M600668200
Joyal, 1997, Calmodulin activates phosphatidylinositol 3-kinase, J. Biol. Chem., 272, 28183, 10.1074/jbc.272.45.28183
Wang, 2015, K-Ras promotes tumorigenicity through suppression of non-canonical Wnt signaling, Cell, 163, 1237, 10.1016/j.cell.2015.10.041
Nussinov, 2014, Unraveling structural mechanisms of allosteric drug action, Trends Pharmacol. Sci., 35, 256, 10.1016/j.tips.2014.03.006
Kar, 2010, Allostery and population shift in drug discovery, Curr. Opin. Pharmacol., 10, 715, 10.1016/j.coph.2010.09.002
Nussinov, 2012, The different ways through which specificity works in orthosteric and allosteric drugs, Curr. Pharm. Des., 18, 1311, 10.2174/138161212799436377
Nussinov, 2013, Allostery in disease and in drug discovery, Cell, 153, 293, 10.1016/j.cell.2013.03.034
Nussinov, 2015, The design of covalent allosteric drugs, Annu. Rev. Pharmacol. Toxicol., 55, 249, 10.1146/annurev-pharmtox-010814-124401
Jubb, 2015, Flexibility and small pockets at protein-protein interfaces: new insights into druggability, Prog. Biophys. Mol. Biol., 119, 2, 10.1016/j.pbiomolbio.2015.01.009
Higueruelo, 2013, Protein-protein interactions as druggable targets: recent technological advances, Curr. Opin. Pharmacol., 13, 791, 10.1016/j.coph.2013.05.009
Ostrem, 2013, K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions, Nature, 503, 548, 10.1038/nature12796
Wang, 2016, In vivo genetic dissection of tumor growth and the Warburg effect, elife, 5, 10.7554/eLife.18126
Zhao, 2017, Direct targeting of the Ras GTPase superfamily through structure- based design, Curr. Top. Med. Chem., 17, 16, 10.2174/1568026616666160719165633
Cox, 2015, Targeting RAS membrane association: back to the future for anti-RAS drug discovery?, Clin. Cancer Res., 21, 1819, 10.1158/1078-0432.CCR-14-3214
Dharmaiah, 2016, Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ, Proc. Natl. Acad. Sci. U. S. A., 113, E6766, 10.1073/pnas.1615316113
Martin-Gago, 2017, A PDE6δ-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2, Angew. Chem. Int. Ed. Eng., 56, 2423, 10.1002/anie.201610957
Spiegel, 2014, Small-molecule modulation of Ras signaling, Nat. Chem. Biol., 10, 613, 10.1038/nchembio.1560
Muratcioglu, 2017, PDEδ binding to Ras isoforms provides a route to proper membrane localization, J. Phys. Chem. B, 121, 5917, 10.1021/acs.jpcb.7b03035
Haworth, 2016, Immune profiling of Nf1-associated tumors reveals distinct differences among histologic subtypes and potential for patient-specific selection of immunotherapy, Neuro-Oncology, 18, 90-90, 10.1093/neuonc/now212.375
Sheridan, 2015, Evading inhibitory constraints–destabilizing p110α/p85α interactions, FEBS J., 282, 3525, 10.1111/febs.13392
Nussinov, 2016, Independent and core pathways in oncogenic KRAS signaling, Expert Rev. Proteomics, 13, 711, 10.1080/14789450.2016.1209417
Wu, 2015, β-Adducin siRNA disruption of the spectrin-based cytoskeleton in differentiating keratinocytes prevented by calcium acting through calmodulin/epidermal growth factor receptor/cadherin pathway, Cell. Signal., 27, 15, 10.1016/j.cellsig.2014.10.001
Tzou, 2016, Identification of initial leads directed at the calmodulin-binding region on the Src-SH2 domain that exhibit anti-proliferation activity against pancreatic cancer, Bioorg. Med. Chem. Lett., 26, 1237, 10.1016/j.bmcl.2016.01.027
Gabelli, 2014, Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects, Biophys. Rev., 6, 89, 10.1007/s12551-013-0131-1
Kodaki, 1994, The activation of phosphatidylinositol 3-kinase by Ras, Curr. Biol., 4, 798, 10.1016/S0960-9822(00)00177-9
Gupta, 2007, Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice, Cell, 129, 957, 10.1016/j.cell.2007.03.051
Backer, 1992, Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation, EMBO J., 11, 3469, 10.1002/j.1460-2075.1992.tb05426.x
Vadas, 2011, Structural basis for activation and inhibition of class I phosphoinositide 3-kinases, Sci. Signal., 4, re2, 10.1126/scisignal.2002165
Miled, 2007, Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit, Science, 317, 239, 10.1126/science.1135394
Huang, 2007, The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations, Science, 318, 1744, 10.1126/science.1150799
Zhao, 2008, Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms, Proc. Natl. Acad. Sci. U. S. A., 105, 2652, 10.1073/pnas.0712169105
Carson, 2008, Effects of oncogenic p110α subunit mutations on the lipid kinase activity of phosphoinositide 3-kinase, Biochem. J., 409, 519, 10.1042/BJ20070681
Geering, 2007, Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers, Proc. Natl. Acad. Sci. U. S. A., 104, 7809, 10.1073/pnas.0700373104
Carpenter, 1993, Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit, J. Biol. Chem., 268, 9478, 10.1016/S0021-9258(18)98375-4
Mandelker, 2009, A frequent kinase domain mutation that changes the interaction between PI3Kα and the membrane, Proc. Natl. Acad. Sci. U. S. A., 106, 16996, 10.1073/pnas.0908444106
Xu, 2014, Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence, Trends Biochem. Sci., 39, 268, 10.1016/j.tibs.2014.04.004
Chaudhuri, 2016, Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation, Proc. Natl. Acad. Sci. U. S. A., 113, 2110, 10.1073/pnas.1600371113
Shoelson, 1993, Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation, EMBO J., 12, 795, 10.1002/j.1460-2075.1993.tb05714.x
Benaim, 2002, Phosphorylation of calmodulin. Functional implications, Eur. J. Biochem., 269, 3619, 10.1046/j.1432-1033.2002.03038.x
Joyal, 1996, Identification of insulin-stimulated phosphorylation sites on calmodulin, Biochemistry, 35, 6267, 10.1021/bi9600198
Wong, 1988, Characteristics of calmodulin phosphorylation by the insulin receptor kinase, Endocrinology, 123, 1830, 10.1210/endo-123-4-1830
Williams, 1994, Tyrosine-phosphorylated calmodulin has reduced biological activity, Arch. Biochem. Biophys., 315, 119, 10.1006/abbi.1994.1479
Benguria, 1994, Phosphorylation of calmodulin by the epidermal-growth-factor-receptor tyrosine kinase, Eur. J. Biochem., 224, 909, 10.1111/j.1432-1033.1994.00909.x
Benaim, 1998, Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases, Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 120, 57, 10.1016/S0742-8413(98)00006-1
Palomo-Jimenez, 1999, A method for the purification of phospho(Tyr)calmodulin free of nonphosphorylated calmodulin, Protein Expr. Purif., 16, 388, 10.1006/prep.1999.1092
Stateva, 2015, Ca2+/Calmodulin and Apo-Calmodulin both bind to and enhance the tyrosine kinase activity of c-Src, PLoS One, 10, 10.1371/journal.pone.0128783
Stateva, 2015, Characterization of phospho-(tyrosine)-mimetic calmodulin mutants, PLoS One, 10, 10.1371/journal.pone.0120798
Franke, 1995, The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase, Cell, 81, 727, 10.1016/0092-8674(95)90534-0
Deb, 2004, Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells, J. Biol. Chem., 279, 38903, 10.1074/jbc.M405314200
Lemmon, 2007, Pleckstrin homology (PH) domains and phosphoinositides, Cell Biology of Inositol Lipids and Phosphates, 74, 81
Xu, 2010, Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain, J. Mol. Biol., 396, 31, 10.1016/j.jmb.2009.11.006
Yu, 2004, Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains, Mol. Cell, 13, 677, 10.1016/S1097-2765(04)00083-8
Dillon, 2007, The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer, Oncogene, 26, 1338, 10.1038/sj.onc.1210202
Cooray, 2004, The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival, J. Gen. Virol., 85, 1065, 10.1099/vir.0.19771-0
Huang, 2011, Phosphatidylserine is a critical modulator for Akt activation, J. Cell Biol., 192, 979, 10.1083/jcb.201005100
Agamasu, 2015, Structural and biophysical characterization of the interactions between calmodulin and the pleckstrin homology domain of Akt, J. Biol. Chem., 290, 27403, 10.1074/jbc.M115.673939
Gorbatyuk, 2006, Mapping the phosphoinositide-binding site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction, Mol. Cell, 24, 511, 10.1016/j.molcel.2006.10.007
Calleja, 2009, Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition, PLoS Biol., 7, 10.1371/journal.pbio.1000017
Calleja, 2007, Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo, PLoS Biol., 5, 10.1371/journal.pbio.0050095
Wu, 2010, Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition, PLoS One, 5, 10.1371/journal.pone.0012913
Parikh, 2012, Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers, Proc. Natl. Acad. Sci. U. S. A., 109, 19368, 10.1073/pnas.1204384109
Smith, 2015, IQGAPs choreograph cellular signaling from the membrane to the nucleus, Trends Cell Biol., 25, 171, 10.1016/j.tcb.2014.12.005
Hedman, 2015, The biology of IQGAP proteins: beyond the cytoskeleton, EMBO Rep., 16, 427, 10.15252/embr.201439834
Roy, 2005, IQGAP1 is a scaffold for mitogen-activated protein kinase signaling, Mol. Cell. Biol., 25, 7940, 10.1128/MCB.25.18.7940-7952.2005
Choi, 2013, IQGAP1 is a novel phosphatidylinositol 4,5 bisphosphate effector in regulation of directional cell migration, EMBO J., 32, 2617, 10.1038/emboj.2013.191
Li, 2003, Elucidation of the interaction of calmodulin with the IQ motifs of IQGAP1, J. Biol. Chem., 278, 4347, 10.1074/jbc.M208579200
Chagpar, 2010, Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. U. S. A., 107, 5471, 10.1073/pnas.0908899107
Ren, 2007, IQGAP1 modulates activation of B-Raf, Proc. Natl. Acad. Sci. U. S. A., 104, 10465, 10.1073/pnas.0611308104
Jameson, 2013, IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors, Nat. Med., 19, 626, 10.1038/nm.3165
Sbroggio, 2011, IQGAP1 regulates ERK1/2 and AKT signalling in the heart and sustains functional remodelling upon pressure overload, Cardiovasc. Res., 91, 456, 10.1093/cvr/cvr103
Matsunaga, 2014, IQGAP1 selectively interacts with K-Ras but not with H-Ras and modulates K-Ras function, Biochem. Biophys. Res. Commun., 444, 360, 10.1016/j.bbrc.2014.01.041
McNulty, 2011, MAPK scaffold IQGAP1 binds the EGF receptor and modulates its activation, J. Biol. Chem., 286, 15010, 10.1074/jbc.M111.227694
Roy, 2004, IQGAP1 binds ERK2 and modulates its activity, J. Biol. Chem., 279, 17329, 10.1074/jbc.M308405200
Monteleon, 2015, IQGAP1 and IQGAP3 serve individually essential roles in normal epidermal homeostasis and tumor progression, J. Invest. Dermatol., 135, 2258, 10.1038/jid.2015.140
Hu, 2004, A map of WW domain family interactions, Proteomics, 4, 643, 10.1002/pmic.200300632
Burke, 2015, Synergy in activating class I PI3Ks, Trends Biochem. Sci., 40, 88, 10.1016/j.tibs.2014.12.003
Gao, 2011, PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains, Proc. Natl. Acad. Sci. U. S. A., 108, 14509, 10.1073/pnas.1019386108