California’s Low Carbon Fuel Standard: Modeling financial least-cost pathways to compliance in Northwest California

Kevin R Fingerman1,2, Colin Sheppard3,4, Andrew Harris2
1Department of Environmental Science and Management, Humboldt State University. 1 Harpst St, Arcata, CA 95521, United States
2Schatz Energy Research Center, United States
3Sustainable Transportation Initiative, Lawrence Berkeley National Laboratory, United States
4Department of Civil and Environmental Engineering, University of California, Berkeley, United States

Tài liệu tham khảo

Azar, 2011, The elusive quest for technology-neutral policies, Environ. Innov. Soc. Transit., 1, 135, 10.1016/j.eist.2011.03.003 Bennear, 2007, Second-best theory and the use of multiple policy instruments, Environ. Resour. Econ., 37, 111, 10.1007/s10640-007-9110-y Brandt, 2014, Methane leaks from North American natural gas systems, Science, 343, 733, 10.1126/science.1247045 California Air Resources Board, 2016. GHG Emission Inventory (GHG EI) 2000–2014 [WWW Document] <http://www.arb.ca.gov/cc/inventory/data/data.htm>. California Air Resources Board, 2015. California-modified Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (CA-GREET) Model [WWW Document] <https://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm>. California Air Resources Board, 2014. EMFAC Emissions Database [WWW Document] <http://www.arb.ca.gov/emfac/>. California Air Resources Board, n.d. LCFS Pathway Certified Carbon Intensities [WWW Document] <https://www.arb.ca.gov/fuels/lcfs/fuelpathways/pathwaytable.htm> (accessed 9.8.16). California Energy Commission, 2014. Program Opportunity Notice 13-607 [WWW Document] <http://www.energy.ca.gov/contracts/PON-13-607/>. Center for Sustainable Energy, 2014. CA PEV Owners Survey [WWW Document] <https://cleanvehiclerebate.org/eng/program-reports>. Chen, 2017, A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect, Appl. Energy, 185, 825, 10.1016/j.apenergy.2016.10.094 Christensen, 2016, A model of state and federal biofuel policy: feasibility assessment of the California Low Carbon Fuel Standard, Appl. Energy, 169, 799, 10.1016/j.apenergy.2016.01.121 Greene, 2008, Fuel economy: the case for market failure, 181 Jaccard, 2009, Combining top down and bottom up in energy economy models Kesicki, 2012, Intertemporal issues and marginal abatement costs in the UK transport sector, Transp. Res. Part Transp. Environ., 17, 418, 10.1016/j.trd.2012.04.002 Kesicki, 2012, Marginal abatement cost curves: a call for caution, Clim. Policy, 12, 219, 10.1080/14693062.2011.582347 Kesicki, 2011, Marginal abatement cost (MAC) curves: confronting theory and practice, Environ. Sci. Policy, 14, 1195, 10.1016/j.envsci.2011.08.004 Kok, 2011, Cost-effectiveness of greenhouse gas mitigation in transport: a review of methodological approaches and their impact, Energy Policy, 39, 7776, 10.1016/j.enpol.2011.09.023 Lade, 2015, The design and economics of low carbon fuel standards, Res. Transp. Econ., 52, 91, 10.1016/j.retrec.2015.10.009 Leighty, 2012, Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions, Energy Policy, 44, 52, 10.1016/j.enpol.2012.01.013 Lemoine, 2017, Escape from third-best: Rating emissions for intensity standards, Environ. Resour. Econ., 67, 789, 10.1007/s10640-016-0006-6 Levihn, 2014, Marginal abatement cost curves and abatement strategies: taking option interdependency and investments unrelated to climate change into account, Energy, 76, 336, 10.1016/j.energy.2014.08.025 Long, 2011 Lutsey, 2010, Cost-effectiveness assessment of low-carbon vehicle and fuel technologies, Transp. Res. Rec. J. Transp. Res. Board, 90, 10.3141/2191-12 Lutsey, 2009, Greenhouse gas mitigation supply curve for the United States for transport versus other sectors, Transp. Res. Part Transp. Environ., 14, 222, 10.1016/j.trd.2008.12.002 Meier, 1982 Melaina, 2013 Melton, 2016, Moving beyond alternative fuel hype to decarbonize transportation, Nat. Energy, 1, 16013, 10.1038/nenergy.2016.13 Moriarty, 2014 Morrison, 2015, Comparison of low-carbon pathways for California, Clim. Change, 131, 545, 10.1007/s10584-015-1403-5 Morrow, 2010, Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector, Energy Policy, 38, 1305, 10.1016/j.enpol.2009.11.006 Murphy, 2011, Energy efficiency and the cost of GHG abatement: a comparison of bottom-up and hybrid models for the US, Energy Policy, 39, 7146, 10.1016/j.enpol.2011.08.033 National Research Council, 2013 Nauclér, 2009, 192 Plevin, 2014, Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers, J. Ind. Ecol., 18, 73, 10.1111/jiec.12074 Plevin, 2017, Fuel carbon intensity standards may not mitigate climate change, Energy Policy, 105, 93, 10.1016/j.enpol.2017.02.037 Ramsden, 2013 Redwood Coast Energy Authority, 2013. North Coast Plug-in Electric Vehicle Readiness Plan: Tasks 3.1 and 3.2 Interim Report. Eureka, CA. Rhodes, 2015, Gauging citizen support for a low carbon fuel standard, Energy Policy, 79, 104, 10.1016/j.enpol.2015.01.019 Rubin, 2013, Tradable credits system design and cost savings for a national low carbon fuel standard for road transport, Energy Policy, 56, 16, 10.1016/j.enpol.2012.05.031 Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’agosto, M., Dimitriu, D., Figueroa Meza, M.J., Fulton, L., Kobayashi, S., Lah, O., et al., 2014. Chapter 8: transport. Clim. Change 2014 Mitig. Clim. Change Contrib. Work. Group III Fifth Assess. Rep. Intergov. Panel Clim. Change. Small, 2007, Fuel efficiency and motor vehicle travel: the declining rebound effect, Energy J., 25 Sperling, 2009 Tomaschek, 2015, Marginal abatement cost curves for policy recommendation–a method for energy system analysis, Energy Policy, 85, 376, 10.1016/j.enpol.2015.05.021 US Congressional Budget Office, R., 2012. Effects of Federal Tax Credits for the Purchase of Electric Vehicles. Washington, DC. U.S. Energy Information Administration, 2016. International Energy Outlook 2016 (No. DOE/EIA-0484(2016)). United States Department of Energy, Washington, DC. U.S. Energy Information Administration, 2015. United States Annual Energy Outlook 2015. U.S. EPA, 2010. Supplemental EPA Analysis of the American Clean Energy and Security Act of 2009 H.R. 2454 in the 111th Congress. Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, DC. van der Zwaan, 2013, How to decarbonize the transport sector?, Energy Policy, 61, 562, 10.1016/j.enpol.2013.05.118 Vogt-Schilb, 2014, Marginal abatement cost curves and the optimal timing of mitigation measures, Energy Policy, 66, 645, 10.1016/j.enpol.2013.11.045 Wei, 2013, Deep carbon reductions in California require electrification and integration across economic sectors, Environ. Res. Lett., 8, 014038, 10.1088/1748-9326/8/1/014038 Williams, 2012, The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity, Science, 335, 53, 10.1126/science.1208365 Yang, 2009, Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: a case study in California, Transp. Res. Part Transp. Environ., 14, 147, 10.1016/j.trd.2008.11.010 Yang, 2016 Yang, 2015, Achieving California’s 80% greenhouse gas reduction target in 2050: technology, policy and scenario analysis using CA-TIMES energy economic systems model, Energy Policy, 77, 118, 10.1016/j.enpol.2014.12.006 Yeh, 2009, Assessment of technologies to meet a low carbon fuel standard, Environ. Sci. Technol., 43, 6907, 10.1021/es900262w Yeh, 2010, Low carbon fuel standards: Implementation scenarios and challenges, Energy Policy, 38, 6955, 10.1016/j.enpol.2010.07.012 Yeh, 2016 Yeh, 2016, A review of low carbon fuel policies: principles, program status and future directions, Energy Policy, 97, 220, 10.1016/j.enpol.2016.07.029