Calibration of Vehicle-Following Model Parameters Using Mixed Traffic Trajectory Data

Pranav Anand1, Atmakuri Priyanka2, Viswa Sri Rupa Anne2, Gowri Asaithambi1, Karthik K. Srinivasan2, R. Sivanandan2, Bhargava Rama Chilukuri2
1Department of Civil Engineering, National Institute of Technology Karnataka, Mangalore, India
2Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24:274–281. https://doi.org/10.1063/1.1721265

Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9:545–567

Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res Part B 15:105–111. https://doi.org/10.1016/0191-2615(81)90037-0

Krauß S (1998) Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics

Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62:1805–1824. https://doi.org/10.1103/PhysRevE.62.1805

Leutzbach W, Wiedemann R (1986) Development and applications of traffic simulation models at the Karlsruhe Institut Fuer Verkehrswesen. Traffic Eng Control 27:270–278

Wiedemann R (1974) Simulation des Straßenverkehrsflusses. In: Institut für Verkehrswesen, Universität Karlsruhe, Karlsruhe

Bando M, Hasebe K, Nakayama A et al (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51:1035–1042. https://doi.org/10.1103/PhysRevE.51.1035

Kesting A, Treiber M (2008) Calibrating car-following models using trajectory data: methodological study. Transp Res Rec 2088:148–156. https://doi.org/10.3141/2088-16

Chen C, Li L, Hu J, Geng C (2010) Calibration of MITSIM and IDM car-following model based on NGSIM trajectory datasets. Proc 2010 IEEE Int Conf Veh electron safety. ICVES 2010:48–53. https://doi.org/10.1109/ICVES.2010.5550943

Punzo V, Tripodi A (2007) Steady-state solutions and multiclass calibration of Gipps microscopic traffic flow model. Transp Res Rec J Transp Res Board 1999:104–114. https://doi.org/10.3141/1999-12

Toledo T, Koutsopoulos H, Davol A et al (2003) Calibration and validation of microscopic traffic simulation tools: Stockholm case study. Transp Res Rec J Transp Res Board 1831:65–75. https://doi.org/10.3141/1831-08

Gunay B (2007) Car following theory with lateral discomfort. Transp Res Part B 41:722–735. https://doi.org/10.1016/j.trb.2007.02.002

Ravishankar KVR, Mathew Tom V (2011) Vehicle-type dependent car-following model for heterogeneous traffic conditions. J Transp Eng 137:775–781. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000273

Asaithambi G, Basheer S (2017) Analysis and modeling of vehicle following behavior in mixed traffic conditions. Transp Res Procedia 25:5094–5103. https://doi.org/10.1016/j.trpro.2017.07.001

Durrani U, Lee C, Maoh H (2016) Calibrating the Wiedemann’s vehicle-following model using mixed vehicle-pair interactions. Transp Res Part C 67:227–242. https://doi.org/10.1016/j.trc.2016.02.012

Asaithambi G, Kanagaraj V, Srinivasan KK, Sivanandan R (2016) Study of traffic flow characteristics using different vehicle-following models under mixed traffic conditions. Transp Lett. https://doi.org/10.1080/19427867.2016.1190887

Raju N, Kumar P, Chepuri A, Arkatkar SS, Joshi G (2016) Calibration of vehicle following models using trajectory data under heterogeneous traffic conditions. In: Proceedings of the 96th transportation research board annual meeting. Washington, D. C., USA

Kanagaraj V, Asaithambi G, Toledo T, Lee T-C (2015) Trajectory data and flow characteristics of mixed traffic. Transp Res Rec J Transp Res Board 2491:1–11. https://doi.org/10.3141/2491-01

Smith C (2014) US 231 Scottsville road scoping and traffic operations study appendix B: VISSIM development and calibration report

Kanagaraj V, Asaithambi G, Kumar CHN et al (2013) Evaluation of different vehicle following models under mixed traffic conditions. Proc Soc Behav Sci 104:390–401. https://doi.org/10.1016/j.sbspro.2013.11.132