Calibration errors on experimental slant total electron content (TEC) determined with GPS

L. Ciraolo1, F. Azpilicueta2, C. Brunini2,3, Amalia Meza2,3, S. M. Radicella4
1Istituto di Fisica Applicata “Carrara” del Consiglio Nazionale delle Ricerche (IFAC-CNR), Sesto Fiorentino (FI), Italy
2Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Argentina
3Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
4Aeronomy and Radiopropagation Laboratory, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Azpilicueta F, Brunini C, Radicella SM (2005) Global ionospheric maps from GPS observations using modip latitude. Adv Space Res JARS 7882:8. DOI 10.1016/j.asr.2005.07.069 (in press)

Bassiri S, Hajj A (1992) Higher order ionospheric effects on the Global Positioning System observables and means of modelling them. manuscripta geodaetica 18:280–290

Beutler G, Rotacher M, Schaer, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of Earth sciences. Adv Space Res 23(4):631–653. DOI 10.1016/S0273-1177(99)00160-X

Bishop G, Walsh D, Daly P, Mazzella A, Holland E (1994) Analysis of the temporal stability of GPS and GLONASS group delay correction terms seen in various sets of ionospheric delay data. In: Proceedings of the ION GPS-94, Salt Lake City, pp 1653–1661

Blewitt G (1990) An automatic editing algorithm for GPS data. Geophys Res Lett 17(3):199–202

Braasch M (1996) Multi-path effects. In: Parkinson BW Spilker JJ (eds) Global Positioning System: theory and applications, vol 1. Progress in astronautics and aeronautics, American Institute of Aeronautics and Astronautics, pp 547–568

Brunini C (1998) Global Ionospheric model from GPS measurements. PhD thesis, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata

Brunini C, van Zele MA, Meza A, Gende M (2003) Quiet and perturbed ionospheric representation according to the electron content from GPS signals. J Geophys Res 108:SIA4-1. CiteID 1056. DOI A2 10.1029/2002JA009346

Brunini C, Meza A, Azpilicueta F, van Zele A, Gende M, Diaz A (2004) A new ionosphere monitoring technology based on GPS. Astrophys Space Sci 290:415–429. DOI 10.1023/B:ASTR.0000032540.35594.64

Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J Geod 79. DOI 10.1007/s00190-005-0448-z

Brunner FK, Gu M (1991) An improved model for the dual frequency ionospheric correction of GPS observations. manuscripta geodaetica 16:205–214

Byun SH, Hajj GA, Young LE (2002) Development and application of GPS signal multi-path simulator. Radio Sci 37(6):1098. DOI 10.1029/2001RS002549

Davies K, Hartmann GK (1997) Studying the ionosphere with the Global Positioning System. Radio Sci 32(4):1695–1703

Feltens J (1998) Chapman Profile Approach for 3-D Global TEC representation. In: Proceedings of the 1998 IGS Analysis Centres Workshop, Darmstadt, pp 285–297

Gao Y, Heroux P, Kouba J (1994) Estimation of GPS receiver and satellite L1/L2 signal delay biases using data from CACS. In: Proceedings of the KIS-94, Banff, pp 109–117

Gao Y, Lahaye F, Héroux P, Liao X, Beck N, Olynik M (2001) Modeling and estimation of C1-P1 bias in GPS receivers. J Geod 74(9):621–626. DOI 10.1007/s001900000117

Gaposchkin EM, Coster AJ (1993) GPS L1–L2 bias determination. Lincoln Laboratory Technical Report 971 (MIT), Massachusetts

Hernandez-Pajares M (2004) IGS Ionosphere WG: an overview. In: Proceedings of the COST 2004, Nice, pp 29–29

Hernández-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Solar Terr Phys 61:1237–1247

Jakowsky N, Sardon E, Egler E, Jungstand A, Klahn D (1996) About the use of GPS measurements for ionospheric studies. In: Beutler G, Hein GW, Melbourne WG, Seebr G (eds) GPS trends in precise terrestrial airborne and spaceborne applications. IAG Symposium vol 115. Springer, Berlin Heidelberg New York, pp 335–340

Langley R (1996) Propagation of the GPS signals. In: Kleusberg A, Teunissen P (eds) GPS for geodesy. Springer, Berlin Heidelberg New York, pp 103–140. ISBN 3-540-60785-4

Lanyi GE, Roth T (1988) A comparison of mapped and measured total ionospheric electron content using Global Positioning System and beacon satellite observations. Radio Sci 23:483–492

Leitinger R, Putz E (1988) Ionospheric refraction errors and observables. Atmospheric effects on geodetic space measurements. Monograph 12, School of Surveying, University of New South Wales, Sydney, pp 81–102

Ma XF, Maruyama T, Ma G (2005) Determination of GPS receiver differential biases by neuronal network parameter estimation method. Radio Sci 40:RS1002. DOI 10.1029/2004RS003072

Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582

Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyasaky S (2002) A new method for mapping of total electron content using GPS in Japan. Earth Planets Space 54:63–70

Sardon E, Zarraoa N (1997) Estimation of total electron-content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32:1899–1910

Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci 29:577–586

Schaer S (1999) Mapping and predicting the Earth’s ionosphere using the Global Positioning System. PhD thesis, Astronomisches Institut, Universität Bern, Switzerland

Walter T, Blanch J, Rife J (2004) Treatment of biased error distributions in SBAS. J Global Position Syst 3(1–2):265–272