Calibration and compensation of machine tool volumetric error using a laser tracker
Tài liệu tham khảo
Flynn, 2016, Hybrid additive and subtractive machine tools–research and industrial developments, Int. J. Mach. Tools Manuf., 101, 79, 10.1016/j.ijmachtools.2015.11.007
Liang, 2012, Dynamic design approach of an ultra-precision machine tool used for optical parts machining, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 226, 1930, 10.1177/0954405412458998
Xiang, 2016, Modeling and compensation of volumetric errors for five-axis machine tools, Int. J. Mach. Tools Manuf., 101, 65, 10.1016/j.ijmachtools.2015.11.006
Lee, 2013, Measurement and verification of position-independent geometric errors of a five-axis machine tool using a double ball-bar, Int. J. Mach. Tools Manuf., 70, 45, 10.1016/j.ijmachtools.2013.03.010
Raksiri, 2002, Kinematic and geometric error verification and compensation of a three axes vertical machining center, vol. 2, 1008
Chen, 2016, A comprehensive error analysis method for the geometric error of multi-axis machine tool, Int. J. Mach. Tools Manuf., 106, 56, 10.1016/j.ijmachtools.2016.04.001
Andolfatto, 2011, Evaluation of servo, geometric and dynamic error sources on five-axis high-speed machine tool, Int. J. Mach. Tools Manuf., 51, 787, 10.1016/j.ijmachtools.2011.07.002
Weckenmann, 2005, Comparison of cmm length measurement tests conducted with different 1d, 2d and 3d standards, 113
Sartori, 1995, Geometric error measurement and compensation of machines, CIRP Ann.-Manuf. Technol., 44, 599, 10.1016/S0007-8506(07)60507-1
Chen, 1999, Geometric error calibration of multi-axis machines using an auto-alignment laser interferometer, Precis. Eng., 23, 243, 10.1016/S0141-6359(99)00016-1
Zargarbashi, 2006, Assessment of machine tool trunnion axis motion error, using magnetic double ball bar, Int. J. Mach. Tools Manuf., 46, 1823, 10.1016/j.ijmachtools.2005.11.010
Pahk, 1997, A new technique for volumetric error assessment of cnc machine tools incorporating ball bar measurement and 3d volumetric error model, Int. J. Mach. Tools Manuf., 37, 1583, 10.1016/S0890-6955(97)00029-1
Aguado, 2012, Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements, Int. J. Mach. Tools Manuf., 53, 160, 10.1016/j.ijmachtools.2011.11.004
Zhang, 2013, A general strategy for geometric error identification of multi-axis machine tools based on point measurement, Int. J. Adv. Manuf. Technol., 69, 1483, 10.1007/s00170-013-5094-7
Aguado, 2014, Study of self-calibration and multilateration in machine tool volumetric verification for laser tracker error reduction, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 228, 659, 10.1177/0954405413511074
Wang, 2012, The technical method of geometric error measurement for multi-axis nc machine tool by laser tracker, Meas. Sci. Technol., 23, 10.1088/0957-0233/23/4/045003
West, 2001, Fiducial point placement and the accuracy of point-based, rigid body registration, Neurosurgery, 48, 810
Arun, 1987, Least-squares fitting of two 3-d point sets, IEEE Trans. pattern Anal. Mach. Intell., 698, 10.1109/TPAMI.1987.4767965
Fitzpatrick, 1998, Predicting error in rigid-body point-based registration, IEEE Trans. Med. imaging, 17, 694, 10.1109/42.736021
Schönemann, 1966, A generalized solution of the orthogonal procrustes problem, Psychometrika, 31, 1, 10.1007/BF02289451
Lorusso, 1995
Moghari, 2009, Distribution of target registration error for anisotropic and inhomogeneous fiducial localization error, IEEE Trans. Med. imaging, 28, 799, 10.1109/TMI.2009.2020751
Batchelor, 2000, A study of the anisotropically weighted procrustes problem [optical image-guided surgery application], 212
Balachandran, 2009, Iterative solution for rigid-body point-based registration with anisotropic weighting
Fitzpatrick, 2001, The distribution of target registration error in rigid-body point-based registration, IEEE Trans. Med. imaging, 20, 917, 10.1109/42.952729