Caldera size modulated by the yield stress within a crystal-rich magma reservoir
Tóm tắt
Từ khóa
Tài liệu tham khảo
Self, S. The effects and consequences of very large explosive volcanic eruptions. Phil. Trans. R. Soc. A 364, 2073–2097 (2006).
Lindsay, J. M. et al. Magmatic evolution of the La Pacana caldera system, central Andes, Chile: Compositional variation of two cogenetic large-volume felsic ignimbrites. J. Petrol. 42, 459–486 (2001).
Lipman, P. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the southern Rocky Mountain volcanic field. Geosphere 3, 42–70 (2007).
Bachmann, O. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).
Druitt, T., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).
Halliday, A. N. et al. Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: The isotopic record in precaldera lavas of Glass Mountain. Earth Planet. Sci. Lett. 94, 274–290 (1989).
Pallister, J. S., Hoblitt, R. P. & Reyes, A. G. A basaltic trigger for the 1991 eruptions of Pinatubo volcano?. Nature 356, 426–428 (1992).
Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011).
Stickel, J. J. & Powell, R. L. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149 (2005).
Philpotts, A., Shi, J. & Brustman, C. Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395, 343–346 (1998).
Saar, M. O., Manga, M., Cashman, K. V. & Fremouw, S. Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet. Sci. Lett. 187, 367–379 (2001).
Rampino, M. R. & Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, 50–52 (1992).
Jaupart, C. & Allègre, C. J. Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet. Sci. Lett. 102, 413–429 (1991).
Gudmundsson, A. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull. Volcanol. 60, 160–170 (1998).
Self, S., Goff, F., Gardner, J., Wright, J. V. & Kite, W. M. Explosive rhyolitic volcanism in the Jemez Mountains: Vent locations, caldera development and relation to regional structure. J. Geophys. Res. 91, 1779–1798 (1986).
Geyer, A. & Marti, J. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. J. Volcanol. Geotherm. Res. 175, 334–354 (2008).
Marti, J., Geyer, A., Folch, A. & Gottsmann, J. in Studies in Volcanology: The Legacy of George Walker (eds Thordarson, T., Self, S., Larsen, G., Rowland, S. & Hoskuldsson, A.) 249–266 (Special Publication of IAVCEI, No. 2, Geological Society, 2009).
Stix, J. & Kobayashi, T. Magma dynamics and collapse mechanisms during four historic caldera-forming events. J. Geophys. Res. 113, B09205 (2008).
Kennedy, B. M., Jellinek, A. M. & Stix, J. Coupled caldera subsidence and stirring inferred from analogue models. Nature Geosci. 1, 385–389 (2008).
Tait, S., Jaupart, C. & Vergniolle, S. Pressure, gas content and eruption periodicity of a shallow, crystallizing magma chamber. Earth Planet. Sci. Lett. 92, 107–123 (1989).
Huppert, H. & Woods, A. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).
Druitt, T. H. & Sparks, R. S. J. On the formation of calderas during ignimbrite eruptions. Nature 310, 679–681 (1984).
Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).
Dufek, J. & Bachmann, O. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 38, 687–690 (2010).
Cathey, H. E. & Nash, B. P. The Cougar Point tuff: Implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J. Petrol. 45, 27–58 (2004).